Primer on Short-Lived Climate Pollutants

Slowing the rate of global warming over the near term by cutting short-lived climate pollutants to complement carbon dioxide reductions for the long term

Institute for Governance & Sustainable Development

February 2013
Primer on Short-Lived Climate Pollutants

Slowing the rate of global warming over the near term by cutting short-lived climate pollutants to complement carbon dioxide reductions for the long term

The Institute for Governance & Sustainable Development’s mission is to promote just and sustainable societies and to protect the environment by advancing the understanding, development, and implementation of effective, accountable and democratic systems of governance for sustainable development.

Beginning in 2005, the Institute embarked on a “fast-action” climate mitigation campaign to promote strategies that will result in significant reductions of emissions, temperature, and impacts in the near term, focusing primarily on strategies to reduce non-CO₂ climate pollutants, to complement cuts in CO₂, which is responsible for more than half of all warming. It is essential to reduce both non-CO₂ pollutants and CO₂. Neither alone is sufficient to limit the increase in global temperature to a safe level.

IGSD’s fast-action strategies include reducing emissions of short-lived climate pollutants—black carbon, methane, tropospheric ozone, and hydrofluorocarbons. They also include measures to capture, reuse, and / or store CO₂ after it is emitted, including biosequestration and strategies to turn biomass into more stable forms of carbon for long-term storage.

Durwood Zaelke, President*

Institute for Governance & Sustainable Development

*We would like to thank N. Borgford-Parnell, X. Sun, & D. Clare for their work on this Primer, as well as our outside reviewers.
Executive Summary

Carbon dioxide (CO$_2$) emissions are responsible for 55-60% of anthropogenic radiative forcing.1 Fast and aggressive CO$_2$ mitigation is therefore essential to combat the resulting climate change. But this is not enough. CO$_2$ mitigation must be combined with fast and aggressive reductions of the pollutants causing the other 40-45% of warming.2 These pollutants include black carbon, tropospheric ozone, methane, and hydrofluorocarbons (HFCs). Because these pollutants have atmospheric lifetimes of only days to a decade and a half, they are referred to as short-lived climate pollutants (SLCPs). Reducing SLCPs is critical for slowing the rate of climate change over the next several decades and for protecting the people and regions most vulnerable to near-term climate impacts.

Although we have known about SLCPs for more than thirty-five years,3 the following scientific developments have catapulted them to the front lines in the battle against climate change.

- *First* is the recognition that we have already added enough greenhouse gases to warm the planet by 2.4°C or more during this century.4 Much of this warming has been offset by cooling aerosols, primarily sulfates, which are being reduced under current air pollution policies. These reductions are important, but will contribute to near-term warming. Without fast-action mitigation to cut SLCPs, warming may cross the 1.5°C to 2°C threshold by mid-century. Reducing SLCPs is the most effective strategy for constraining warming in the near term, since most of their warming effect disappears within weeks to a decade and a half after reductions.
• **Second** is the recognition that in addition to being climate forcers, three of the four SLCPs are also air pollutants that damage public health and ecosystems. Reducing them will prevent millions of premature deaths every year, protect tens of millions of tonnes of crops, and contribute to sustainable development.

• **Third** is the recognition that the benefits for health, crops, and sustainable development will accrue primarily in the nations or regions that take action to mitigate these pollutants, due to the stronger impacts black carbon and tropospheric ozone have near their emissions sources.

• **Fourth** is the recognition that there are practical and proven ways to reduce all four of these pollutants and that existing laws and institutions are often available to support the reductions.

Reducing three of the SLCPs—black carbon, tropospheric ozone, and methane—has the potential to avoid $\sim 0.5^\circ \text{C}$ global average warming by 20505 and 0.84°C in the Arctic by 2070.6 This would cut the current rate of global warming by half, the rate of warming in the Arctic by two thirds, and the rate of warming over the elevated regions of the Himalayas and Tibet by at least half.7

Reducing SLCPs will in turn:

• Help stabilize regional climate systems and reduce heat waves, fires, droughts, floods and hurricanes in mid-latitudes, and slow shifts in monsoons, expansion of desertification, and increases in cyclones in the tropics.

• Slow the melting of glaciers and Arctic sea ice and the rate of sea-level rise.8

• Slow the pace of other climate impacts and provide critical time to adapt to unavoidable impacts.
The primary direct local benefits for developing countries from reducing SLCPs include:

- Saving millions of lives a year and significantly reducing other illnesses.
- Improving food security.
- Expanding access to sustainable energy for the billions forced to depend on traditional cooking and heating fuels.

Preventing growth in the other SLCP, HFCs, can increase the warming prevented by 2050 to $-0.6^\circ C$ and can prevent an additional $-0.4^\circ C$ warming by 2100. Reductions in all of these SLCPs can be achieved quickly, and in most cases by using existing technologies and existing laws and institutions.

Using existing technologies and institutions to reduce these non-CO$_2$ climate pollutants may offer the best near-term protection for the countries that are most vulnerable to climate change impacts, including island nations, countries with low-lying coastal areas, and agriculture-dependent countries in Asia and Africa already suffering droughts, floods, and shifting rainfall. Slowing the rate of climate change and reducing near-term impacts is a critical complement to adaptation strategies and to sustainable development, with the potential to provide global benefits for climate, crops, and health valued at 5.9 trillion annually, starting in 2030.

Each of these four SLCPs are being addressed in the Climate and Clean Air Coalition to Reduce Short-Lived Climate Pollutants (CCAC). The CCAC is comprised of developing and developed countries, along with UNEP, UNDP, the European Commission, and the World Bank, as well as non-governmental organizations. The G8 countries joined the Coalition and their leaders requested the World Bank to conduct a study of how best to integrate SLCP reductions in its programs.
In addition to being included in the CCAC, HFCs are addressed in the Rio + 20 declaration, *The Future We Want*, where leaders supported phasing down HFC production and use.\(^\text{10}\) Such a phase down can be achieved through the Montreal Protocol, while simultaneously improving the energy efficiency of refrigerators, air conditioners, and other equipment and products that use these chemicals, thus reducing CO_2 emissions as well. The Federated States of Micronesia has made a formal proposal to amend the Montreal Protocol to do this, as have the North American Parties (Mexico, Canada, and the U.S.).\(^\text{11}\) As of 2013 more than 100 Parties have expressed support.\(^\text{12}\) Action at national and regional levels, such as the European Union’s regulatory efforts, also can help reduce HFCs, as can voluntary efforts.

Although reducing SLCPs is essential for reducing near-term climate impacts, it is not sufficient. Aggressive reductions in CO_2 emissions also are essential for limiting temperature rise. However, in contrast to the short lifetime of SLCPs, only about half of CO_2 emissions are removed from the atmosphere in the first hundred years with a significant fraction lasting for several millennia.\(^\text{13}\) Reducing CO_2 emissions now, in line with 450 parts per million (ppm) scenarios, can avoid approximately 0.15°C of additional warming compared to the warming expected from a business-as-usual (BAU) scenario within 30 years, growing to 0.5°C within 50 years.\(^\text{14}\) However, such cuts to CO_2 alone, would still see temperatures rise above 2°C by the middle of this century (see Fig. 5).

Importantly, SLCP and CO_2 reductions are complementary, and if large-scale reductions of both are undertaken immediately there is a high probability of keeping the increase in global temperature to less than 1.5°C above the pre-industrial temperature for the next 30 years and below the 2°C guardrail for the next 60 to 90 years (see Fig. 4 & 5).
Introduction to Short-lived Climate Pollutants

CO$_2$ emissions account for 55-60% of current anthropogenic radiative forcing. Fast and aggressive CO$_2$ cuts are essential to combat the resulting climate change. But this is not enough. CO$_2$ cuts must be combined with fast and aggressive cuts to SLCPs, which are causing the other 40-45% of forcing.

Black Carbon

Black carbon is a potent climate-forcing aerosol that remains in the atmosphere for only a few days or weeks.15 It is a component of soot and is a product of the incomplete combustion of fossil fuels, biofuels, and biomass.16 Black carbon contributes to climate change in several ways: it warms the atmosphere directly by absorbing solar radiation and emitting it as heat, it contributes to melting by darkening the surfaces of ice and snow when it is deposited on them, and it can also affect the microphysical properties of clouds in a manner than can perturb precipitation patterns. Recent estimates of black carbon’s radiative forcing confirm that it is the second leading cause of global warming.17 The total climate forcing of black carbon is 1.1 W m$^{-2}$, second only to CO$_2$ (1.7 W m$^{-2}$).18

Black carbon also harms human health; it is a primary component of fine particle air pollution (PM2.5), and can cause or contribute to a number of adverse health effects, including asthma and other respiratory problems, low birth weights, heart attacks, and lung cancer.19

The main sources of black carbon are open burning of biomass, diesel engines, and the residential burning of solid fuels such as
coal, wood, dung, and agricultural residues. In 2000, global emissions of black carbon were estimated at approximately 7.5 million tons, with a large uncertainty range.

Black carbon is co-emitted with other pollutants, some of which are light in color and cause cooling by scattering solar radiation back into the atmosphere. The type and quantity of pollutants differs by source, and a high ratio of warming to cooling pollutants indicates the most promising sources to target for producing fast cooling. A recent assessment of black carbon confirmed that emissions from diesel engines and some industrial and residential coal sources have the highest ratio of black carbon to lighter co-emitted pollutants compared to other black carbon sources.

Another recent study of co-emitted pollutants known collectively as “brown carbon” indicates that even black carbon sources that have a high proportion of lighter co-emitted pollutants, such as the open burning of biomass, may still cause net warming. This is because the warming from brown carbon appears to be offsetting some or all of the lighter particles’ cooling effect. This, in turn, would mean that the lighter pollutants are not offsetting as much warming from black carbon as assumed in many models.

Over areas of snow and ice, such as the Arctic, even sources with a large proportion of pollutants that normally cause cooling still produce significant warming. This is because deposition of both darker and lighter particles, including dust, reduces the reflectivity (albedo) of snow and ice, allowing more solar radiation to be absorbed, which causes local warming and increases surface melting. Regardless of the climate effect, all particle pollutants harm human health.

Thanks to modern pollution controls and fuel switching, black carbon emissions in North America and Europe were significantly curbed in the early 1900s. However, mobile sources, particularly
diesel vehicles, continue to be a major source category for these regions. Black carbon sources in developing countries are significantly different from those in North America and Europe. In developing countries, a much larger proportion of black carbon emissions comes from residential heating and cooking, and industry. According to UNEP, global emissions of black carbon are expected to remain relatively stable through 2030, with continuing reductions in North America and Europe largely offset by continued growth in other parts of the world.

Methane

Methane is a powerful greenhouse gas with a 100-year global warming potential 21 times that of CO$_2$ and an atmospheric lifetime of approximately 12 years. About 60% of global methane emissions are due to human activities. The main sources of anthropogenic methane emissions are oil and gas systems; agriculture, including enteric fermentation, manure management, and rice cultivations; landfills; wastewater treatment; and emissions from coal mines. Methane is the primary component of natural gas, with some emitted to the atmosphere during its production, processing, storage, transmission, and distribution.

The radiative forcing of methane in 2005 was 0.48 W/m2, which is about 30% of CO$_2$ radiative forcing. According to a recent UNEP and WMO assessment, anthropogenic methane emissions are expected to grow 25% over 2005 levels by 2030, driven by increased production from coal mining and oil and gas production, and growth in agricultural and municipal waste emissions.

Tropospheric Ozone

Ozone is a reactive gas which, when in the stratosphere, absorbs dangerous ultraviolet radiation; however, lower atmosphere
(tropospheric) ozone is a major air and climate pollutant which causes warming and is harmful to human health and crop production. Breathing ozone is particularly dangerous to children, older adults and people with lung diseases, and can cause bronchitis, emphysema, asthma, and may permanently scar lung tissue. Its impacts on plant include not only lower crop yields but also a reduced ability to absorb CO$_2$.

Tropospheric ozone is not emitted directly but instead forms from reactions between precursor gases, both human-produced and natural. These precursor gases include carbon monoxide, oxides of nitrogen (NOx), and volatile organic compounds (VOCs), which include methane. Globally increased methane emissions are responsible for approximately two thirds of the rise in tropospheric ozone. Reducing emissions of methane will lead to significant reductions in tropospheric ozone and its damaging effects.

Hydrofluorocarbons (HFCs)

HFCs are factory-made chemicals used primarily in refrigeration and insulating foams. They have a warming effect hundreds to thousands of times more powerful than CO$_2$. The average lifetime of the mix of HFCs, weighted by usage, is 15 years. HFCs are the fastest growing greenhouse gases in many countries, including the U.S., where emissions grew nearly 9% between 2009 and 2010 compared to 3.6% for CO$_2$. Globally, HFC emissions are growing 10 to 15% per year and are expected to double by 2020. Without fast action to limit their growth, by 2050 the annual climate forcing of HFCs could equal nearly 20% of the forcing from CO$_2$ emissions in a BAU scenario, and up to 40% of the forcing from CO$_2$ emissions under a scenario where CO$_2$ concentrations have been limited to 450 parts ppm (see Fig. 1). This is about the same as the forcing from present annual CO$_2$ emissions from the transportation sector.
Projected radiative forcing of climate by HFCs and CO\textsubscript{2} since 2000, when the influence of HFCs was essentially zero. The HFC climate forcing for an upper range scenario is compared with the CO\textsubscript{2} forcing for the range of scenarios from IPCC-SRES and the 450 ppm CO\textsubscript{2} stabilization scenario. Clearly, the contribution of HFCs to radiative forcing could be very significant in the future; by 2050, it could be as much as a quarter of that due to CO\textsubscript{2} increases since 2000, if the upper range HFC scenario is compared to the median of the SRES scenario. Alternatively, the contribution of HFCs to radiative forcing could be one fifth the radiative forcing due to CO\textsubscript{2} increases since 2000, if the upper range HFC scenario is compared to the upper range of the SRES scenario. The contribution of HFCs to radiative forcing could also be as much as 40\% of the radiative forcing by CO\textsubscript{2} under the 450 ppm scenario.45
Both CO$_2$ Mitigation and SLCP Mitigation are Critical for Climate Safety

Importance of Immediate CO$_2$ Mitigation

CO$_2$ is the single most significant climate forcer, accounting for 55-60% of present climate forcing. Substantial and immediate reductions in CO$_2$ emissions are necessary to limit global temperature rise, although CO$_2$ reductions are less effective for limiting warming over the next 30 years.46 Even after reductions in emissions take place, resultant reductions in warming will be gradual, taking almost half a century.47 For example, keeping CO$_2$ emissions to below 450 ppm by 2100 is predicted to prevent approximately 0.15°C of BAU warming in the first 30 years, with prevented warming increasing to 0.5°C 50 years after significant reductions begin (see Fig. 5).48 Cuts to CO$_2$ alone, while providing significant avoided temperatures compared to BAU warming, would still see temperatures rise above 2°C by the middle of this century (see Fig. 5).

CO$_2$ emissions will continue to cause warming over the long term because of their long lifetime in the atmosphere. While approximately 50% of CO$_2$ is removed from the atmosphere within a century, a substantial portion (20-40%) of CO$_2$ emissions remains in the atmosphere for millennia (see Fig. 2).49 CO$_2$’s long atmospheric lifetime combined with the thermal inertia of the ocean, which causes trapped heat to be released over many centuries, means that if CO$_2$ emissions were to cease, more than 80% of the expected decrease in global mean temperatures would not be realized for up to a thousand years.50
The long legacy of warming due to anthropogenic CO$_2$ will cause a number of long-term impacts, such as sea level rise, that are irreversible on human timescales, even if emissions were to cease tomorrow. Committed sea-level rise from thermal expansion alone could be as high as one meter if atmospheric CO$_2$ concentrations are allowed to exceed 600 ppm (see Fig. 4). (Atmospheric CO$_2$ concentrations reached 394 ppm in 2012 and could reach as high as 1,100 ppm by the end of this century under BAU scenarios.)
Figure 2: Time Scales for Removal of \(\text{CO}_2 \) from the Atmosphere

Model simulation of atmospheric \(\text{CO}_2 \) concentration for >100,000 years following a large \(\text{CO}_2 \) release from combustion of fossil fuels. Different fractions of the released gas recover on different timescales.\(^{54}\)
Significantly reducing CO$_2$ emissions will require a massive decarbonization of the global economy and energy systems. It requires a portfolio of actions including conservation and efficiency improvements to reduce the carbon intensity of energy use, along with the replacement of fossil fuels with renewables, carbon capture, reuse, and storage, and numerous other steps.55 However, building a new, cleaner energy infrastructure to reduce CO$_2$ emissions will require considerable energy from the present infrastructure. The very effort to put in place a sustainable energy system will likely require increased emissions over the short term. Therefore, the prevention of climate impacts from such an effort would likely be delayed for several decades.56

Figure 3: Irreversible Sea-Level Rise and Warming from CO$_2$

The black line shows irreversible global average surface warming based upon peak atmospheric CO$_2$ concentrations. The red band shows lower limit range of corresponding sea-level rise from thermal expansion only, due to peak atmospheric CO$_2$ concentrations.57
Importance of Immediate SLCP Mitigation

Cutting SLCPs is a critical climate strategy for reducing the near-term rate of global warming, particularly in regions most vulnerable to climate change, as well as for offsetting the near-term warming that will result from reductions of cooling aerosols such as sulfates, which are important to reduce to protect public health and ecosystems despite the warming this will cause.

SLCPs account for approximately 40-45% of present climate forcing. In contrast to CO₂, the short atmospheric lifetimes of SLCPs means that reducing them will produce as much as 90% of predicted prevented warming within a decade, with the final 10% delayed for hundreds of years due to ocean thermal inertia. Reducing three of the non-CO₂ SLCPs—black carbon, tropospheric ozone, and methane—has the potential to avoid 0.5°C global warming by 2050 and 0.7°C in the Arctic by 2040, which can cut the rate of global warming by half, the rate of Arctic warming by two thirds, and can reduce warming in the high altitude Himalayan-Tibetan Plateau by at least half. (During the past half century, the rate of global warming has been about 0.13°C per decade. The rate of warming in the Arctic is currently at least twice the global average, and the rate in the Himalayas and Tibet is about three times the global average.) Adding HFC reductions to these black carbon, tropospheric ozone and methane reductions can increase the reduction in the rate of global warming from 50% to about 60%.

While the measured warming from climate pollutants is presently about 0.8°C above preindustrial levels, the total warming that is committed but yet not fully realized from historic emissions through 2005 is estimated to be 2.4 to 4.3°C. Up to 1.15°C of this committed warming is currently being ‘masked’ by emissions of cooling aerosols, primarily sulfates, from fossil fuel and biomass combustion which are now being rapidly reduced to protect human
health and ecosystems. Un-masking this committed warming could push global temperatures over the 2°C guardrail by mid-century (see Fig. 4, blue line). Reducing HFCs, black carbon, tropospheric ozone, and methane is essential for limiting this warming (see Fig. 4, black line).

Figure 4: Warming Avoided Through Combined SLCP and CO₂ Mitigation

The red line depicts strong mitigation of CO₂ (peaking in 2015 and remaining at 2015 levels until 2100, reaching a concentration peak of 430 ppm by 2050), but no mitigation of non-CO₂ greenhouse gases, and does not account for forcing from aerosols or land use change; the blue line is the same as the red line except it includes warming and cooling aerosol forcing and the mitigation of cooling sulfate aerosols; the black line is the same as the blue line except it includes mitigation of all SLCPs including HFCs; the pink and yellow backgrounds show zones beyond 2°C and 1.5°C.

Benefits of Combined CO₂ and SLCP Mitigation

CO₂ and SLCPs can be thought of as two separate control knobs for temperature increase that operate independently and on
different timescales. Both must be turned down simultaneously and immediately as part of a comprehensive climate strategy to prevent possible near-term, abrupt climate change and long-term climate destabilization. The combination of CO₂ mitigation and SLCP mitigation provides the greatest chance of keeping global temperatures below 1.5°C for the next 30 to 40 years and provides the best chance to keep global temperatures below the 2°C guardrail through 2100.

Figure 5: Temperature Rise Predictions Under Various Mitigation Scenarios

Observed temperatures through 2009 and projected temperatures thereafter under various scenarios, all relative to the 1890–1910 mean. Results for future scenarios are the central values from analytic equations estimating the response to forcings calculated from composition-climate modeling and literature assessments. The rightmost bars give 2070 ranges, including uncertainty in radiative forcing and climate sensitivity.
A portion of the uncertainty is systematic, so that overlapping ranges do not mean there is no significant difference.) (Note: HFC mitigation is not included in this graph, although it is included in Fig. 4, above.)

Benefits for Climate Vulnerable Regions

Global warming is expressed as a global average increase in surface temperature, but warming is experienced unevenly across different regions, with some of the world’s most vulnerable regions warming much faster than the global average rate. For example, Africa is warming about one and a half times faster than the average, and the Arctic and the Himalayan-Tibetan plateau are warming two to three times of the average global rate. Therefore, it is particularly important that SLCP reductions may be able to rapidly reduce the rate of regional warming in places such as the Arctic, the high elevation regions of the Himalayas and Tibet, and other regions with vulnerable climates, including those where enhanced warming may trigger amplifying feedbacks and/or the passage of potential climate tipping points—the points at which a chain of events escalate such that it is impossible to return to former condition.

Warming in the Arctic and Himalayan-Tibetan plateau in particular could lead to dangerous climate feedbacks that cause warming to accelerate past tipping points. One example of such a feedback is the melting of Arctic snow and sea-ice, which reached a record low in September 2012. As the reflective ice and snow is replaced with darker heat-absorbing land and ocean, warming can amplify, which in turn further reduces ice and snow cover, creating the dangerous feedback loop.

Black carbon is estimated to be responsible for 50% of the increase in Arctic warming, or almost 1°C of the total 1.9°C increase between 1890 and 2007. Approximately 50% of the warming on
the Himalayan-Tibetan plateau has also been attributed to black carbon.79 Cutting black carbon, tropospheric ozone and methane can cut the rate of warming in the Arctic by two thirds and the rate of warming over the elevated regions of the Himalayan-Tibetan plateau by at least half.80 Reducing these pollutants is essential, though not sufficient for saving the Arctic and other vulnerable places in the short term.81

\textbf{Benefits for Human Health and Food Security}

In addition to climate benefits, reducing SLCPs provides strong benefits for public health and food security. Cutting these local air pollutants can save up to 4.7 million lives each year, increase global crop yields by up to 135 million metric tons and repair the ability of plants to sequester carbon, a function now being impaired by tropospheric ozone.82 According to one study, the deaths avoided from technically possible reductions in black carbon and methane would represent “1-8\% of cardiopulmonary and lung cancer deaths among those age 30 years and older, and 1-7\% of all deaths for all ages.”83 Improvements in crop production are estimated to be up to 4\% of total annual global production of the four major staple grains: maize, rice, soybeans, and wheat.84

Due to the heightened effects of black carbon and tropospheric ozone near emissions sources, these benefits, including much of the climate mitigation benefits, are enjoyed largely by the regions making the cuts. For example, eliminating emissions of black carbon from traditional solid biomass stoves with improved cook stoves would have a major impact in reducing black carbon direct climate effects over South Asia (by about 60\%).85
Mitigation Measures for Short-lived Climate Pollutants

Black Carbon and Methane Mitigation

Recent studies have identified fourteen mitigation measures targeting emissions of black carbon and methane that can provide immediate benefits. These measures are capable of reducing global methane emissions by ~38% and emissions of black carbon by ~77%, realizing “nearly 90% of the maximum reduction in net GWP,” from these sources.

Methane Control Measures
- Control fugitive emissions from oil and gas production
- Control emissions from coal mining
- Control fugitive emissions from long distance gas transmission
- Capture gas from municipal waste and landfills
- Capture gas from wastewater treatment facilities
- Capture gas from livestock manure
- Intermittent aeration of constantly flooded rice paddies

Black Carbon Control Measures
- Install particulate filters on diesel vehicles
- Replace traditions cooking stoves with clean burning biomass stoves
- Modernize brick kilns
- Modernize coke ovens
- Ban open burning of biomass
- Eliminate high emitting on and off-road diesel vehicles
- Provide global access to modern cooking and heating
Reducing diesel black carbon emissions along with other key sources, including brick kilns and residential solid fuel burning, can quickly reduce warming because of the low levels of co-emitted cooling aerosols from these sources.88 In addition, replacing the millions of kerosene-fueled simple wick lamps used in many developing countries, with low cost and low-emission lamps, could provide significant black carbon mitigation.89

Most of the control measures for reducing black carbon, and for reducing tropospheric ozone by reducing one of its precursors, methane, can be implemented today with existing technologies, and often with existing laws and institutions, including through enhancement and enforcement of existing air quality regulations.90

Half of the identified black carbon and methane measures can be implemented with a net cost savings averaged globally.91 Recent analysis indicates that approximately 64\% of predicted reductions in methane from the identified measures can be achieved for less than $250 per metric ton, well below the estimated ~$1000 per metric ton value gained from climate mitigation, improved health outcomes, and crop production.92 For black carbon, improved efficiencies from modernizing brick kilns and replacing traditional wood burning stoves can lead to a net cost savings, and together account for approximately half of possible black carbon reductions.93 Recent research indicates that a large portion of the remaining black carbon mitigation measures will likely cost substantially less than the value of the health, climate, and crop benefits achieved (see Table 1).94 All of these mitigation measures are ultimately cost effective when the $5.9 trillion annual benefits that start in 2030 are taken into account, and can be achieved by linearly phasing in the identified fourteen targeted control measures from 2010 through 2030 (see Table 1).95
Table 1: Valuation of Global Benefits from Full Implementation of 14 SLCP Measures

<table>
<thead>
<tr>
<th></th>
<th>Methane Measures</th>
<th>Black Carbon Measures</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate Benefit</td>
<td>$331 (449 – 213)</td>
<td>$225 (343 – 13)</td>
<td>$556 (792 – 226)</td>
</tr>
<tr>
<td>Crop Benefit</td>
<td>$4.2 (5.4 – 3)</td>
<td>$4 (7.2 – 0.8)</td>
<td>$8.2 (12.6 – 3.8)</td>
</tr>
<tr>
<td>Health Benefit</td>
<td>$148 (247 – 49)</td>
<td>$5142 (9853 – 1564)</td>
<td>$5290 (10100 – 1613)</td>
</tr>
<tr>
<td>Total</td>
<td>$483.2 (701.4 – 265)</td>
<td>$5371 (10203.2 – 1577.8)</td>
<td>$5854.2 (10904.6 – 1845.2)</td>
</tr>
</tbody>
</table>

HFC Mitigation

The mitigation approach for reducing HFCs is different from that for black carbon and methane. Because they are manmade, HFCs can be most effectively controlled through a phase down of their production and consumption, which could take place under the Montreal Protocol. The successful phase-out of CFCs and the ongoing phase-out of HCFCs have made the Montreal Protocol the world’s most effective climate treaty. Between 1990 and 2010 the Montreal Protocol reduced CO$_2$-eq emissions nearly twenty times more than the initial commitment period of the Kyoto Protocol (see Fig. 6).

There have been two proposals put forth to phase down high-GWP HFCs under the Montreal Protocol, one by the Federated States of Micronesia and the other by the North American countries, the U.S., Canada, and Mexico. The proposals are similar, and each would reduce 85-90% of HFC production and use, providing climate mitigation equivalent to 100 billion
tonnes of CO$_2$ emissions by 2050 (range of 87-146 billion tonnes) (see Fig. 7), at very low cost. The HFC amendments would substantially eliminate the global warming caused by one of the six Kyoto Protocol greenhouse gases by avoiding the production and use of high-GWP HFCs, providing up to 7% of the total CO$_2$-eq mitigation needed to have a 75% chance of staying below the 2°C guardrail.103

Figure 6: Climate Protection of the Montreal Protocol and the Kyoto Protocol

UNEP, Climate Protection of the Montreal Protocol and the Kyoto Protocol (2012)104

HFCs are now the fastest growing GHG pollutant in the U.S. and in many other countries. This is due in part to their being used as replacements for HCFCs, which are now being phased out, and
in part to the growing global demand for air conditioning and refrigeration.105 This demand is increasing as the world warms and as the population grows and gets richer. If left unchecked, by 2050 warming from annual emissions of HFCs could be equivalent to 20\% of warming from annual CO\textsubscript{2} emissions under a BAU scenario, and up to 45\% of the warming from annual CO\textsubscript{2} emissions under a 450 ppm CO\textsubscript{2} stabilization scenario.106

Many national governments have taken action to reduce HFCs. Such action includes: creating national databases of equipment containing HFCs in Hungary, Slovenia, and Estonia; mandatory refrigerant leakage checks for mobile equipment in Germany, Sweden, and the Netherlands; and producer responsibility schemes requiring producers and suppliers of HFCs to take back recovered bulk HFCs for further recycling, reclamation and destruction in Sweden and Germany.107 California is reducing HFC use in mobile air conditioning systems through its Low Emission Vehicle (LEV III) regulation by requiring that all passenger cars, light duty trucks, and medium-duty passenger vehicles use refrigerants with a global warming potential less than or equal to 150, as of model year 2017.108 The U.S. allows manufacturers of cars and light-trucks to generate credits towards their compliance with CO\textsubscript{2} emission standards and fuel economy CAFE standards by employing HFC alternative refrigerants in mobile air conditioning systems for model year 2012-2016 vehicles.109 According to the new rules for model years 2017-2025, U.S. CAFE standards continue to provide HFC alternative credits and include credits for improvements in mobile air conditioner efficiency.110 The EC is currently strengthening its f-gas regulations.

Private companies are also taking voluntary action to limit HFCs. The Consumer Good Forum, a global network of over 650 retailers, manufactures, service providers, and other stakeholders from over seventy countries has pledged to begin phasing out HFCs in new equipment beginning in 2015.111
Because the global weighted average lifetime of HFCs now in use is 15 years, HFCs are included in the CCAC. In the Rio +20 declaration, *The Future We Want*, more than one hundred heads of State recognized the climate damage from HFCs and called for the gradual phase down of their production and consumption. In addition, 108 countries have joined the *Bangkok Declaration* calling for the use of low-GWP alternatives to CFCs and HCFCs.

Figure 7: Projected HFC Emission Reductions from FSM and NA Proposals

The North American proposal and the Micronesian proposal are similar; both decrease the cumulative (2013-2050) direct GWP-weighted emissions of HFCs to 22-24 GtCO$_2$-eq from 110-170 GtCO$_2$-eq, for a total of ~87 to 146 GtCO$_2$-eq in mitigation. This is equivalent to a reduction from projected annual emissions of 5.5 to 8.8 GtCO$_2$-eq/yr in 2050 to less than ~0.3 GtCO$_2$-eq/yr.
Climate and Clean Air Coalition to Reduce SLCPs

The CCAC was launched in February 2012, and now has 27 State partners, as well as the European Commission, World Bank, United Nations Environment Programme, United Nations Development Programme, and United Nations Industrial Development Organization. The State partners are: Australia, Bangladesh, Canada, Chile, Colombia, Côte d’Ivoire, Denmark, Dominican Republic, Ethiopia, Finland, France, Germany, Ghana, Israel, Italy, Japan, Jordan, the Republic of Korea, the Republic of Maldives, Mexico, the Netherlands, Nigeria, Norway, Sweden, Switzerland, the U.K., and the U.S. The CCAC also has 18 NGO partners: Bellona Foundation, Center for Clean Air Policy, Center for Human Rights and Environment, Clean Air Initiative for Asian Cities, Clean Air Institute, Clean Air Task Force, ClimateWorks Foundation, Earthjustice, Environmental Defense Fund, Global Alliance for Clean Cookstoves, Institute for Advanced Sustainability Studies, Institute for Governance and Sustainable Development, International Centre for Integrated Mountain Development, International Council on Clean Transportation, International Cryosphere Climate Initiative, International Institute for Sustainable Development, International Union of Air Pollution Prevention and Environmental Protection Associations, Molina Center for Strategic Studies in Energy and the Environment, Stockholm Environment Institute. UNEP was elected to be the initial NGO representative on the Coalition’s Steering Committee. UNEP is representing the Intergovernmental Organizations.

In conjunction with the Rio+20 summit in June 2012, the Coalition and the World Bank joined New York City Mayor Michael R. Bloomberg, Chair of the C40 Cities Climate Leadership Group, former U.S. President Bill Clinton, and Rio de Janeiro Mayor
Eduardo Paes to announce the launch of the *Solid Waste Network* to help cities reduce methane emissions through solid waste management.\(^{117}\)

The CCAC is the first-ever global effort specifically dedicated to reducing emissions of SLCPs as a collective challenge. The CCAC seeks to reduce SLCPs by supporting and coordinating existing programs such as the Clean Cookstove Initiative and the Global Methane Initiative, while “driving development of national action plans and the adoption of policy priorities; building capacity among developing countries; mobilizing public and private action; raising awareness globally; fostering regional and international cooperation, and; improving scientific understanding of the pollutant impacts and mitigation.”\(^{118}\)

Five targeted initiatives have been approved by the CCAC for rapid implementation:\(^{119}\)

- Reducing black carbon emissions from heavy duty diesel vehicles and engines;
- Mitigating black carbon and other pollutants from brick production;
- Mitigating short-lived climate pollutants from the municipal solid waste sector;
- Promoting HFC alternative technologies and standards; and
- Accelerating methane reductions from oil and natural gas production.

The Coalition is developing additional proposals including one addressing open burning of biomass by Ghana and another on cookstoves from Bangladesh.

The CCAC Secretariat is hosted by UNEP’s Paris office, and will manage a dedicated Trust Fund, with an initial contribution of $16.7 million from the U.S., Canada, Sweden, and Norway.\(^{120}\)
The World Bank indicated that it has $12 billion of its portfolio contributing to the CCAC’s goals.121 It further indicated that it wants to significantly expand its funding for SLCP mitigation, going from 12\% of its portfolio in 2012 to 15\% by 2015 and 20\% by 2020.122 Also, the G8 leaders commissioned the World Bank to prepare a report on ways to integrate reductions of SLCPs into their activities and to assess funding options for methane reductions.123

Other Regional and Global SLCP Mitigation Initiatives

In addition to the CCAC there are a number of other global and regional initiatives that target SLCPs. For example, the Executive Body of the Convention on Long-Range Transboundary Air Pollution (CLRTAP) recently approved an amendment to the Gothenburg Protocol adopting new PM requirements and including specific language on black carbon, making it the first international treaty to act on the link between air pollution and climate change.124 The Global Alliance for Clean Cookstoves and the Global Methane Initiative are both specifically targeting some of the largest global sources of black carbon and methane emissions.125 UNEP’s Atmospheric Brown Cloud program is also addressing black carbon and tropospheric ozone, with a focus on Asia and plans to expand to Latin America and Africa.126 Finally, the International Maritime Organization (IMO) is currently considering whether to control black carbon emissions from ships.127 The Arctic Environment Ministers recently called for “urgent action” to reduce SLCPs to protect the Arctic and reduce the risk of feedback mechanisms that accelerate warming and lead to irreversible impacts, and encouraged the Arctic Council to consider a new “instrument or other arrangements to enhance efforts to reduce emissions of black carbon from the Arctic States” for decision at the 2015 Arctic Ministerial meeting.128
Conclusion

Reducing SLCPs will reduce near-term climate impacts, slow dangerous feedbacks, allow more time to adapt, and reduce the risk of passing tipping points that could lead to irreversible climate damage. In addition to providing near-term climate benefits, cutting SLCPs would also provide major benefits for human health and food security and would contribute to sustainable development goals. Cutting SLCPs to achieve near-term climate benefits is an important complement to reducing CO$_2$ emissions, but SLCP reductions are not a substitute for the immediate action urgently needed to reduce CO$_2$. Reducing both CO$_2$ and SLCPs provides the best chance of limiting global temperature rise to below 2°C through 2100. As highlighted by Nobel Laureate Mario Molina and co-authors, regulatory measures in dedicated venues are often the preferred way to reduce SLCPs.129
Endnotes

1 Forster P. et al. (2007), Changes in Atmospheric Constituents and in Radiative Forcing, in IPCC, Climate Change 2007: The Physical Science Basis, at Figure 2.21.

2 Id.

4 Ramanathan V. & Xu Y. (2010) The Copenhagen Accord for limiting global warming: criteria, constraints, and available avenues,
The 3-Wm$^{-2}$ energy should have led to a warming of 2.4 °C (14). The observed warming trend (as of 2005) is only about 0.75 °C (15), or 30% of the expected warming. Observations of trends in ocean heat capacity (16) as well as coupled ocean–atmosphere models suggest that about 20% (0.5 °C warming) is still stored in the oceans (17). The rest of the 50% involves aerosols or particles added by air pollution.

7 During the past half century, the rate of global warming has been about 0.13°C per decade. IPCC (2007) *Technical Summary, in Climate Change 2007: The Physical Science Basis*, 36. The rate of warming in the Arctic is currently at least twice the global average and in the Himalayas and Tibet three times the average. Arctic Monitoring and Assessment Programme (2011) *Snow, Water, Ice and Permafrost in the Arctic, Executive Summary and Key Message*, 4. Average global surface temperatures have increased by 0.8°C, over the 1880–1920 average, and under business-as-usual it could increase by an additional 2°C by 2070. Hansen J. et al. (2010) *Global surface temperature change*, Rev. Geophys. 48:4004; IPCC
Primer on Short-Lived Climate Pollutants

For analysis of these impacts see Schneider, S.H. *et al.*, (2007) *Assessing key vulnerabilities and the risk from climate change, in Climate Change 2007: Impacts, Adaptation and Vulnerability* 779-810; and IPCC (2012) *MANAGING THE RISKS OF EXTREME EVENTS AND DISASTERS TO ADVANCE CLIMATE CHANGE ADAPTATION. A SPECIAL REPORT OF WORKING GROUPS I AND II OF THE INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE*.

Climate and Clean Air Coalition to Reduce Short Lived Climate Pollutants, http://www.unep.org/ccac/.

Proposed Amendment to the Montreal Protocol (submitted by the Federated States of Micronesia), (11 May 2012); *see also Proposed Amendment to the Montreal Protocol* (submitted by the United States, Canada, and Mexico), (9 May 2012).

Solomon S. *et al.* (2007) *CONTRIBUTION OF WORKING GROUP I TO THE FOURTH ASSESSMENT REPORT OF THE INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE* (“While more than half of the CO₂ emitted is currently removed from the atmosphere within a century … about 20% … remains … for many millennia.”); *see also Archer D *et al.* (2009) *Atmospheric lifetime of fossil fuel carbon dioxide*, *ANNU. REV EARTH PLANET. SCI.* 37:117-34 (“Equilibration with the ocean will
Primer on Short-Lived Climate Pollutants

absorb most of it [CO₂] on a timescale of 2 o 20 centuries. Even if this equilibration were allowed to run to completion, a substantial fraction of the CO₂, 20-40%, would remain in the atmosphere awaiting slower chemical reactions with CaCO₃ and igneous rocks.”); Matthews H. D. & Caldeira K. (2008) Stabilizing climate requires near-zero emissions, J. GEOPYSICAL RES. 35(4) (“[W]hile approximately half of the carbon emitted is removed by the natural carbon cycle within a century, a substantial fraction of anthropogenic CO₂ will persist in the atmosphere for several millennia.”); and Hansen J. et al. (2007) Climate change and trace gases, PHIL. TRANS. R. SOC. 365:1925-1954 (“About one-quarter of fossil fuel CO₂ emissions will stay in the air “forever”, i.e. more than 500 years…. Resulting climate changes would be … irreversible.”).

14 UNEP/WMO (2011) INTEGRATED ASSESSMENT OF BLACK CARBON AND TROPOSPHERIC OZONE, 241 (“For example, mitigation of 0.15°C due to CO₂ measures takes place only around 2050 (Figure 6.1) under the CO₂ measures scenario; 30 years after emissions begin to decline rapidly. The influence of the CO₂ reductions grows rapidly, however, so that they mitigate roughly 0.5°C by 2070. Hence a delay of 20 years in implementation of those CO₂ reductions would mean that only ~0.15°C of warming mitigation relative to the reference scenario would be achieved within the 2070 timeframe examined here. Thus delayed CO₂ measures plus all the near-term measures examined here would lead to warming of about 2.1°C in 2070 rather than the 1.75°C shown in Figure 6.1. Conversely, a delay in reducing emissions of short-lived species would have a large impact on near-term warming rates, but little effect on 2070 temperatures (see Figure 5.12).”)

16 U.S. Envtl. Prot. Agency (2012) REPORT TO CONGRESS ON BLACK CARBON; see also UNEP/WMO (2011) INTEGRATED ASSESSMENT OF BLACK CARBON AND TROPOSPHERIC OZONE.

17 Bond T. C. et al. (2013) Bounding the role of black carbon in the climate system: a scientific assessment, Accepted for publication
Primer on Short-Lived Climate Pollutants

in the J. of GEOPHYS. RES. –ATMOS., doi:10.1002/jgrd.50171 (“We estimate that black carbon, with a total climate forcing of +1.1 W m\(^{-2}\), is the second most important human emission in terms of its climate-forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing.”). This study confirms earlier estimates by Jacobson (2001) and Ramanathan and Carmichael (2008), which also concluded that BC is the second largest contributor to global warming after CO\(_2\). See Jacobson M. Z. (2001) *Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols*, Nat. 409:695–69; and Ramanathan V. & Carmichael G. (2008) *Global and regional climate changes due to black carbon*, Nat. Geosci. 1:221; see also U.S. Envtl. Prot. Agency (2012) *REPORT TO CONGRESS ON BLACK CARBON*, 4, 18 (“The sum of the direct and snow/ice albedo effects of BC on the global scale is likely comparable to or larger than the forcing effect from methane, but less than the effect of carbon dioxide; however, there is more uncertainty in the forcing estimates for BC…”)

\(^{18}\) Bond T. C. *et al.* (2013) *Bounding the role of black carbon in the climate system: a scientific assessment*, Accepted for publication in the J. of GEOPHYS. RES. –ATMOS., doi:10.1002/jgrd.50171 (“The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m\(^{-2}\) with 90% uncertainty bounds of +0.17 to +2.1 W m\(^{-2}\). “).

\(^{21}\) Bond T. C. *et al.* (2013) *Bounding the role of black carbon in the climate system: a scientific assessment*, Accepted for publication in the J. of GEOPHYS. RES. –ATMOS., doi:10.1002/jgrd.50171 (“With this method, a bottom-up estimate of total global emissions in the year
2000 is about 7500 Gg BC yr⁻¹, with an uncertainty range of 2000 to 29000 Gg yr⁻¹.”); see also U.S. Env. Prot. Agency (2012) Report to Congress on Black Carbon.

24 Bond T. C. et al. (2013) Bounding the role of black carbon in the climate system: a scientific assessment, Accepted for publication in the J. of Geophys. Res. –Atmos. (“Major sources of BC, ranked in order of increasing POA:BC [primary organic aerosol:black carbon] ratio, are diesel vehicles, residential burning of coal, small industrial kilns and boilers, burning of wood and other biomass for cooking and heating, and all open burning of biomass. A few of these sources also emit significant quantities of SO₂.”)

25 Chung C. E., Ramanathan V., & DeCaro D. (2012) Observationally constrained estimates of carbonaceous aerosol radiative forcing, Proc. Natl. Acad. Sci. USA, 109(29):11624-1162 (“10.4.1.12 Forcing by light-absorbing organic carbon, known as brown carbon, has not been explicitly considered here, although some of the models listed in Table 10.2 assume a small amount of absorption. Carbonaceous aerosols (CA) emitted by fossil and biomass fuels consist of black carbon (BC), a strong absorber of solar radiation, and organic matter (OM). OM scatters as well as absorbs solar radiation. The absorbing component of OM, which is ignored in most climate models, is referred to as brown carbon (BrC)… Organic aerosol was known to cool the planet significantly. The OM forcing estimated by the [IPCC AR4] models was negative, about −0.1 to −0.4 Wm⁻². By integrating and analyzing aerosol observations, we have shown here that organic aerosol, because of the warming effects of brown carbon,
neither cools nor warms the planet. We attribute the negative bias in
the modeling studies primarily to the neglect of the 20% absorption
caused by BrC, particularly over biomass-burning regions in Asia,
Africa, and South America.”); see also Feng Y., Ramanathan V. &
Kotamarthi V. R. (2013) Brown carbon: a significant atmospheric
absorber of solar radiation, ATMOS. CHEM. & PHYS. DISC. 13:2795-
2833.

26 Bond T. C. et al. (2013) Bounding the role of black carbon in the
climate system: a scientific assessment, Accepted for publication in
the J. OF GEOPHYS. RES. --ATMOS., DOI:10.1002/jgrd.50171 (“Light-
absorbing particles in snow can significantly reduce snow albedo.
Because of the high albedo of snow, even aerosol with relatively high
single-scatter albedo (e.g., aerosol with a high OA:BC ratio) causes
positive radiative forcing.”

27 Id.

28 Id. (“Evidence supporting the link between particles and adverse
respiratory and cardiovascular health continues to mount. High
human exposures to particulate matter in urban settings are linked
to sources that emit black carbon and to intense exposures in indoor
air. Thus, reducing particulate matter is desirable to improve human
welfare, regardless of whether those reductions reduce climate
warming.”) (internal citations omitted).

CARBON.

31 UNEP/WMO (2011) INTEGRATED ASSESSMENT OF BLACK CARBON
AND TROPOSPHERIC OZONE.

33 US EPA (2010) METHANE AND NITROUS OXIDE EMISSIONS FROM
NATURAL SOURCES, ES-2 (“Natural sources of CH₄ are estimated to
produce 37 percent of the total CH₄ flux into the atmosphere every
year.”).
Primer on Short-Lived Climate Pollutants

35 Solomon S. et al. (2007), Technical Summary in Climate Change 2007: The Physical Science Basis, at Figure TS.5.

36 UNEP/WMO (2011) Integrated Assessment of Black Carbon and Tropospheric Ozone. (“Without implementation of measures beyond current and planned regulations, methane (CH$_4$) emissions are expected to increase in the future. Increased coal mining and oil and gas production, coupled with growth in agricultural activities and municipal waste generation, are likely to lead to more than 25 per cent higher global anthropogenic CH$_4$ emissions by 2030 relative to 2005. The projected increase in fossil fuel production is the main driving force behind this growth.”).

37 Id.

40 Reducing other ozone precursors can have varying effects on the climate, for example cutting non-methane VOCs can provide some additional cooling but reducing NOx is predicted to produce warming due to its importance for removing methane from the atmosphere. UNEP/WMO (2011) Integrated Assessment of Black Carbon and Tropospheric Ozone, 57 (“Two-thirds of the O$_3$ radiative forcing to date may be attributed to the increase in atmospheric CH$_4$ over the last century, and hence CH$_4$ emissions are responsible for a large part of the increase.”).

41 Id.

UNEPA (2011) **HFCs: A Critical Link in Protecting Climate and the Ozone Layer.**

Id.

Archer D. et al. (2005) *Fate of fossil fuel CO₂ in geologic time*, J. of Geophys. Res. 110:C09S05 (“[W]hile approximately half of the carbon emitted is removed by the natural carbon cycle within a century, a substantial fraction of anthropogenic CO₂ will persist in the atmosphere for several millennia.”); see also UNEP/WMO (2011) **Integrated Assessment of Black Carbon and Tropospheric Ozone**, 241 (“For example, mitigation of 0.15°C due to CO₂ measures takes place only around 2050 (Figure 6.1) under the CO₂ measures scenario; 30 years after emissions begin to decline rapidly.”).

Myhrvold N. P. & Caldeira K. (2012) *Greenhouse gases, climate change and the transition from coal to low-carbon electricity*, Environ. Res. Let. 7:014019, at 4-5 (“Conservation is thus equivalent to phasing out 1 TWe of coal power over 40 yr without any replacement technology. Even in this case, GHGs (particularly CO₂) emitted by coal during the phaseout linger in the atmosphere for many years; in addition, ocean thermal inertia causes temperature changes to lag radiative forcing changes. Consequently, conservation takes 20 yr to achieve a 25% reduction in HGE [high-GHG-emission scenario] warming and 40 yr to achieve a 50% reduction…. Natural gas plants emit about half the GHGs emitted by coal plants of the same capacity, yet a transition to natural gas would require a century or longer to attain even a 25% reduction in HGE warming…. Carbon capture and storage (CCS) also slows HGE warming only very gradually. Although CCS systems are estimated to have raw GHG emissions of 17%-27% that of unmodified coal plants, replacement of a fleet of conventional coal plants by coal-fired CCS plants reduces HGE warming by 25% only after 26–110 yr.”).
rapidly. The influence of the CO\textsubscript{2} reductions grows rapidly, however, so that they mitigate roughly 0.5°C by 2070. Hence a delay of 20 years in implementation of those CO\textsubscript{2} reductions would mean that only ~0.15°C of warming mitigation relative to the reference scenario would be achieved within the 2070 timeframe examined here. Thus delayed CO\textsubscript{2} measures plus all the near-term measures examined here would lead to warming of about 2.1°C in 2070 rather than the 1.75°C shown in Figure 6.1. Conversely, a delay in reducing emissions of short-lived species would have a large impact on near-term warming rates, but little effect on 2070 temperatures (see Figure 5.12).”

49 Solomon S. et al. (2007) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (“While more than half of the CO\textsubscript{2} emitted is currently removed from the atmosphere within a century … about 20% … remains … for many millennia.”); see also Archer D et al. (2009) Atmospheric lifetime of fossil fuel carbon dioxide, Annu. Rev Earth Planet. Sci. 37:117-34 (“Equilibration with the ocean will absorb most of it [CO\textsubscript{2}] on a timescale of 2 o 20 centuries. Even if this equilibration were allowed to run to completion, a substantial fraction of the CO\textsubscript{2}, 20-40%, would remain in the atmosphere awaiting slower chemical reactions with CaCO\textsubscript{3} and igneous rocks.”); Matthews H. D. & Caldeira K. (2008) Stabilizing climate requires near-zero emissions, J. Geophysical Res. 35:4 (“[W]hile approximately half of the carbon emitted is removed by the natural carbon cycle within a century, a substantial fraction of anthropogenic CO\textsubscript{2} will persist in the atmosphere for several millennia.”); and Hansen J. et al. (2007) Climate change and trace gases, Phil. Trans. R. Soc. 365:1925-1954 (“About one-quarter of fossil fuel CO\textsubscript{2} emissions will stay in the air “forever”, i.e. more than 500 years…. Resulting climate changes would be … irreversible.”).

50 UNEP/WMO (2011) Integrated Assessment of Black Carbon and Tropospheric Ozone, 6 (“In the case of an SLCF this means that, when its concentration and hence its radiative forcing is reduced by emission controls, the global mean temperature will achieve most of its decrease towards a new equilibrium value in about a decade. About
10 per cent of the full decrease will not be realized for hundreds of years, since the redistribution of heat stored in the deep ocean while the SLCF was active, and hence its upwards transport, will continue for hundreds of years In the case of CO$_2$, more than 80 per cent of the expected decrease in global mean temperature after emission reductions will not be realized for hundreds of years. This is because the drawing down of atmospheric CO$_2$ into the deep ocean, and hence the decrease in its radiative forcing, is roughly offset by the upward transport of heat to the surface, since both phenomena are achieved by the same physics of deep-ocean mixing....”) citing Solomon S. et al. (2009) *Irreversible climate change due to carbon dioxide emissions*, Proc. Natl. Acad. Sci. USA 106:1704, 1704 (“[C]limate change that takes place due to increases in carbon dioxide concentration is largely irreversible for 1,000 years after emissions stop. Following cessation of emissions, removal of atmospheric carbon dioxide decreases radiative forcing, but is largely compensated by slower loss of heat to the ocean, so that atmospheric temperatures do not drop significantly for at least 1,000 years.”); and Matthews D & Weaver J. (2010) *Committed climate warming*, Nat. Geosci. 3:142.

51 Solomon S. et al. (2009) *Irreversible climate change due to carbon dioxide emissions*, Proc. Natl. Acad. Sci. USA 106(6):1704-1709 (“Anthropogenic carbon dioxide will cause irrevocable sea level rise.... An assessed range of models suggests that the eventual contribution to sea level rise from thermal expansion of the ocean is expected to be 0.2–0.6 m per degree of global warming (5). Fig. 4 uses this range together with a best estimate for climate sensitivity of 3 °C (5) to estimate lower limits to eventual sea level rise due to thermal expansion alone. Fig. 4 shows that even with zero emissions after reaching a peak concentration, irreversible global average sea level rise of at least 0.4–1.0 m is expected if 21st century CO$_2$ concentrations exceed 600 ppmv and as much as 1.9 m for a peak CO$_2$ concentration exceeding 1,000 ppmv.”).

52 Id.

53 National Oceanic & Atmospheric Administration, Trends in Atmospheric Carbon Dioxide; see also Solomon S. et al. (2007)
CONTRIBUTION OF WORKING GROUP I TO THE FOURTH ASSESSMENT REPORT OF THE INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE: THE PHYSICAL SCIENCE BASIS.

56 Myhrvold N. P. & Caldeira K. (2012) *Greenhouse gases, climate change and the transition from coal to low-carbon electricity*, *Environ. Res. Let.* 7:014019, at 1 (“The use of current infrastructure to build this new low-emission system necessitates additional emissions of greenhouse gases, and the coal-based infrastructure will continue to emit substantial amounts of greenhouse gases as it is phased out. Furthermore, ocean thermal inertia delays the climate benefits of emissions reductions.... We show that rapid deployment of low-emission energy systems can do little to diminish the climate impacts in the first half of this century.”).

58 UNEP/WMO (2011) *INTEGRATED ASSESSMENT OF BLACK CARBON AND TROPOSPHERIC OZONE*, 6, 159 (“In the case of an SLCF this means that, when its concentration and hence its radiative forcing is reduced by emission controls, the global mean temperature will achieve most of its decrease towards a new equilibrium value in about a decade. About 10 per cent of the full decrease will not be realized for hundreds of years, since the redistribution of heat stored in the deep ocean while the SLCF was active, and hence its upwards transport, will continue for hundreds of years.... Over the longer term, from 2070 onwards, there is still a reduction in warming in the early measures case, but the value becomes quite small. This reinforces the conclusions drawn from previous analyses that reducing emissions of O₃ precursors and
BC can have substantial benefits in the near term, but that long-term climate change is much more dependent on emissions of long-lived GHGs such as CO$_2$.

59 Shindell D. et al. (2012) Simultaneously mitigating near-term climate change and improving human health and food security, Sci. 335:183, 183. (“We identified 14 measures targeting methane and BC emissions that reduce projected global mean warming ~0.5°C by 2050.”).

60 UNEP/WMO (2011) Integrated Assessment of Black Carbon and Tropospheric Ozone, 246 (“The 16 measures examined here, including the measures on pellet stoves and coal briquettes, reduce warming in the Arctic by 0.7°C (range 0.2 to 1.3°C) at 2040. This is a large portion of the 1.1°C (range 0.7 to 1.7°C) warming projected under the reference scenario for the Arctic…”).

61 Shindell D. et al. (2012) Simultaneously mitigating near-term climate change and improving human health and food security, Sci. 335:183, 183, 185 (“We identified 14 measures targeting methane and BC emissions that reduce projected global mean warming ~0.5°C by 2050. *** BC albedo and direct forcings are large in the Himalayas, where there is an especially pronounced response in the Karakoram, and in the Arctic, where the measures reduce projected warming over the next three decades by approximately two thirds and where regional temperature response patterns correspond fairly closely to albedo forcing…”); see also UNEP/WMO (2011) Integrated Assessment of Black Carbon and Tropospheric Ozone, 3, (“If the measures were to be implemented by 2030, they could halve the potential increase in global temperature projected for 2050 compared to the Assessment’s reference scenario based on current policies and energy and fuel projections. *** This could reduce warming in the Arctic in the next 30 years by about two-thirds compared to the projections of the Assessment’s reference scenario”).

62 IPCC (2007) Technical Summary, in Climate Change 2007: The Physical Science Basis, 36 (“The rate of warming averaged over the last 50 years (0.13°C ± 0.03°C per decade) is nearly twice that for the last 100 years.”)
Arctic Monitoring and Assessment Programme (2011) *Snow, Water, Ice and Permafrost in the Arctic, Executive Summary and Key Message*, 4 (“The increase in annual average temperature since 1980 has been twice as high over the Arctic as it has been over the rest of the world.”); see also Qiu J. (2008) *China: The third pole*, Nature 454:393, 393, available at (“The proximate cause of the changes now being felt on the [Tibetan] plateau is a rise in temperature of up to 0.3°C a decade that has been going on for fifty years — approximately three times the global warming rate.”).

Institute for Advanced Sustainability Studies (2012) *Short Lived Climate Forcers: Pathways to Action – Workshop Summary* (“… inclusion of HFCs mitigation would further reduce the warming by another 20% (about 0.1°C), thus increasing the total reduction of warming between now and 2050 to about 0.6°C” (citing Ramanathan V. & Xu Y. (2010)); see also Ramanathan V & Xu Y. (2010) *The Copenhagen Accord for limiting global warming: criteria, constraints, and available avenues*, Proc. Nat’l Acad. Sci. USA 107:8055, 8055 (“These actions [to reduce emissions of SLCPs including HFCs, methane, black carbon, and ground-level ozone], even if we are restricted to available technologies … can reduce the probability of exceeding the 2°C barrier before 2050 to less than 10% and before 2100 to less than 50% [when CO₂ concentrations are stabilized below 441 ppm during this century].”)

Id.

Id.
Primer on Short-Lived Climate Pollutants

69 National Research Council of the National Academies (2011) **Climate Stabilization Targets: Emissions, Concentrations, and Impacts over Decades to Millennia**, 3; see also UNEP/WMO (2011) **Integrated Assessment of Black Carbon and Tropospheric Ozone**; and United Nations Environment Program (2011) **Near-Term Climate Protection and Clean Air Benefits: Actions for Controlling Short-Lived Climate Forcers**.

70 Ramanathan V & Xu Y. (2010) *The Copenhagen Accord for limiting global warming: criteria, constraints, and available avenues*, Proc. Nat’l Acad. Sci. USA 107:8055, 8055, (“These actions [to reduce emissions of SLCPs including HFCs, methane, black carbon, and ground-level ozone], even if we are restricted to available technologies … can reduce the probability of exceeding the 2°C barrier before 2050 to less than 10% and before 2100 to less than 50% [when CO₂ concentrations are stabilized below 441 ppm during this century]”); see also UNEP/WMO (2011) **Integrated Assessment of Black Carbon and Tropospheric Ozone: Summary for Decisions Makers**, 12 (“[T]he combination of CO₂, CH₄, and BC measures holds the temperature increase below 2°C until around 2070… [and] adoption of the Assessment’s near-term measures (CH₄ + BC) along with the CO₂ reductions would provide a substantial chance of keeping the Earth’s temperature increase below 1.5°C for the next 30 years.”); UNEP/WMO (2011) **Integrated Assessment of Black Carbon and Tropospheric Ozone**, 240 (“Hence adoption of the near-term measures analyzed in this Assessment would increase the chances for society to keep the Earth’s temperature increase below 1.5°C for the next 40 years if these measures were phased in along with CO₂ reductions.”); and Shindell D. et al. (2012) *Simultaneously mitigating near-term climate change and improving human health and food security*, Sci. 335:183, 184 (“The combination of CH₄ and BC measures along with substantial CO₂ emissions reductions [under a 450 parts per million (ppm) scenario] has a high probability of limiting global mean warming to <2°C during the next 60 years, something that neither set of emissions reductions achieves on its own….”)

72 UNEP/WMO (2011) *Integrated Assessment of Black Carbon and Tropospheric Ozone*, at 99 (“While global mean temperatures provide some indication of climate impacts and their simplicity makes them widely used indicators, temperature changes can vary dramatically from place to place…. In the case of the short-lived climate forcing by aerosols and O₃, the forcing itself is also very unevenly distributed, and hence can cause even greater regional contrasts in the temperature response.”); and Christensen, J.H. et al. (2007) *Regional Climate Projections, in Climate Change 2007: The Physical Science Basis*.

73 Qiu J. (2008) *China: The third pole*, Nat. 454:393, 393 (“The proximate cause of the changes now being felt on the [Tibetan] plateau is a rise in temperature of up to 0.3 °C a decade that has been going on for fifty years — approximately three times the global warming rate”); see also Arctic Monitoring and Assessment Programme (2011) *Snow, Water, Ice and Permafrost in the Arctic, Executive Summary and Key Message*, 4 (“The increase in annual average temperature since 1980 has been twice as high over the Arctic as it has been over the rest of the world”); and Cruz R. V. et al. (2007) *Asia, in Climate Change 2007: Impacts, Adaptation and Vulnerability*, 475 (“In all four regions [of Africa] and in all seasons, the median temperature increase [between 1980 and 2099] lies between 3°C and 4°C, roughly 1.5 times the global mean response.”).

75 According to passive microwave data analyzed by the National Snow and Ice Data Center and NASA, on 16 September 2012 the

80 Shindell D. et al. (2012) *Simultaneously mitigating near-term climate change and improving human health and food security*, Sci. 335:183, 183, 185. (“We identified 14 measures targeting methane and BC emissions that reduce projected global mean warming ~0.5°C by 2050. *** BC albedo and direct forcings are large in the Himalayas, where there is an especially pronounced response in the Karakoram, and in the Arctic, where the measures reduce projected warming over the next three decades by approximately two thirds and where regional temperature response patterns correspond fairly closely
to albedo forcing…”); see also UNEP/WMO (2011) Integrated Assessment of Black Carbon and Tropospheric Ozone: Summary for Decisions Makers, 3 (“If the measures were to be implemented by 2030, they could halve the potential increase in global temperature projected for 2050 compared to the Assessment’s reference scenario based on current policies and energy and fuel projections. *** This could reduce warming in the Arctic in the next 30 years by about two-thirds compared to the projections of the Assessment’s reference scenario”).

82 Shindell D. et al. (2012) Simultaneously mitigating near-term climate change and improving human health and food security, Sci. 335:183, 183 (“This strategy avoids 0.7 to 4.7 million annual premature deaths from outdoor air pollution and increases annual crop yields by 30 to 135 million metric tons due to ozone reductions in 2030 and beyond.”); see also UNEP/WMO (2011) Integrated Assessment of Black Carbon and Tropospheric Ozone: Summary for Decisions Makers; and UNEP (2011) Near-Term Climate Protection and Clean Air Benefits: Actions for Controlling Short-Lived Climate Forcers.

83 Anenberg et al. (2012) Global air quality and health co-benefits of mitigating near-term climate change through methane and black carbon emission controls, Envtl. Health Perspectives, 120:831, 831, 838 (“We estimate that, for PM$_{2.5}$ [black carbon] and ozone respectively, fully implementing these [14] measures could reduce global population-weighted average surface concentrations by 23-34% and 7-17% and avoid 0.6-4.4 and 0.04-0.52 million annual premature deaths globally in 2030. More than 80% of the health benefits are estimated to occur in Asia…. Based on our estimates, avoided deaths would represent 1-8% of cardiopulmonary and lung cancer deaths among those age 30 years and older, and 1-7% of all deaths for all ages, assuming constant baseline mortality rates.”).

84 UNEP/WMO (2011) Integrated Assessment of Black Carbon and Tropospheric Ozone: Summary for Decisions Makers, 3 (“Full
implementation of the identified measures could avoid … the loss of 52 million tonnes (within a range of 30–140 million tonnes), 1–4 per cent, of the global production of maize, rice, soybean and wheat each year.”).

86 The UNEP/WMO and Shindell *et al.* studies analyzed the 1650 individual control measures in the technology and emission databases of the IIASA Greenhouse gas: Air pollution Interactions and Synergies (GAINS) climate model. These were grouped into 400 categories which were then analyzed for their impacts on emissions of methane, carbon monoxide, black carbon, organic carbon, sulfur dioxide (SO₂), nitrogen oxides (NOx), volatile organic compounds (VOCs) and carbon dioxide. The measures were further analyzed to determine the net effect of the changes in global radiative forcing (RF) due to changes in emissions of the studied gases and aerosols, and ranked according to their efficacy at reducing global RF. 130 measures were shown to reduce global RF and the top 16 of those measures were shown to produce almost 90% of the total mitigation potential. Shindell *et al.* combined four measures into two larger categories of measures, reducing to 14 the original 16 measures. *See* Shindell D. *et al.* (2012) *Simultaneously mitigating near-term climate change and improving human health and food security*, Sci. 335:183; and UNEP/WMO (2011) *Integrated Assessment of Black Carbon and Tropospheric Ozone: Summary for Decisions Makers*.

87 UNEP (2011) *Near-term Climate Protection and Clean Air Benefits: Actions for Controlling Short-Lived Climate Forcers* (“These measures can accomplish about 38 per cent reduction of global methane emissions and around 77 per cent of black carbon emissions, if implemented between now and 2030, relative to a 2030 ‘reference’ emission scenario.”); see also Shindell D. *et al.* (2012) *Simultaneously mitigating near-term climate change and improving human health and food security*, Sci. 335:183.

88 Bond T. C. *et al.* (2013) *Bounding the role of black carbon in the climate system: a scientific assessment*, Accepted for publication
in the J. of Geophys. Res. –Atmos., DOI:10.1002/jgrd.50171 ("For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all emissions from these sources would reduce net climate forcing (i.e., produce cooling.).")

89 Lam N. et al. (2012) Household light makes global heat: high black carbon emissions from kerosene wick lamps, Environ. Sci. Technol. ("Kerosene-fueled wick lamps used in millions of developing-country households are a significant but overlooked source of black carbon (BC) emissions. We present new laboratory and field measurements showing that 7-9% of kerosene consumed by widely used simple wick lamps is converted to carbonaceous particulate matter that is nearly pure BC...Kerosene lamps have affordable alternatives that pose few clear adoption barriers and would provide immediate benefit to user welfare. The net effect on climate is definitively positive forcing as co-emitted organic carbon is low. No other major BC source has such readily available alternatives, definitive climate forcing effects, and co-benefits. Replacement of kerosene-fueled wick lamps deserves strong consideration for programs that target short-lived climate forcers.")

90 Molina, M., Zaelke, D., Sarma, K. M., Andersen, S. O., Ramanathan, V., and Kaniaru, D. (2009) Reducing abrupt climate change risk using the Montreal Protocol and other regulatory actions to complement cuts in CO$_2$ emissions, Proc. Natl. Acad. Sci. USA ("BC can be reduced by approximately 50% with full application of existing technologies by 2030.... Strategies to reduce BC could borrow existing management and institutions at the international and regional levels, including existing treaty systems regulating shipping and regional air quality."); see also UNEP (2011) Near-term Climate Protection and Clean Air Benefits: Actions for Controlling Short-Lived Climate Forcers ("National efforts to reduce SLCF s can build upon existing institutions, policy and regulatory frameworks related to air quality management, and, where applicable, climate change. *** Regional air pollution agreements, organizations
and initiatives may be effective mechanisms to build awareness, promote the implementation of SLCF mitigation measures, share good practices and enhance capacity. *** Global actions can help enable and encourage national and regional initiatives and support the widespread implementation of SLCF measures. A coordinated approach to combating SLCFs can build on existing institutional arrangements, ensure adequate financial support, enhance capacity and provide technical assistance at the national level.”); and Shindell D. et al. (2012) Simultaneously mitigating near-term climate change and improving human health and food security, Sci. 335:183, 188 (“Many other policy alternatives exist to implement the CH\textsubscript{4} [methane] and BC measures, including enhancement of current air quality regulations.”).

91 UNEP (2011) Near-term Climate Protection and Clean Air Benefits: Actions for Controlling Short-Lived Climate Forcers (“About 50 per cent of both methane and black carbon emissions reductions can be achieved through measures that result in net cost savings (as a global average) over their technical lifetime. The savings occur when initial investments are offset by subsequent cost savings from, for example, reduced fuel use or utilization of recovered methane. A further third of the total methane emissions reduction could be addressed at relatively moderate costs.”).

92 Shindell D. et al. (2012) Simultaneously mitigating near-term climate change and improving human health and food security, Sci. 335:183 (“using $430 for climate and discounted health and agricultural values, gives a total benefit of ~$1100 per metric ton of CH\textsubscript{4} ($700 to $5000 per metric ton, using the above analyses). IEA estimates (37) indicate roughly 100 Tg/year of CH\textsubscript{4} emissions can be abated at marginal costs below $1100, with more than 50 Tg/year costing less than 1/10 this valuation (including the value of CH\textsubscript{4} captured for resale). Analysis using more recent cost information in the GAINS model (38, 39) finds that the measures analyzed here could reduce 2030 CH\textsubscript{4} emissions by ~110 Tg at marginal costs below $1500 per metric ton, with 90 Tg below $250. The full set of
measures reduce emissions by ~140 Tg, indicating that most would produce benefits greater than—and for approximately two-thirds of reductions far greater than—the abatement costs. Of course, the benefits would not necessarily accrue to those incurring costs.”

93 Id. (“GAINS estimates show that improved efficiencies lead to a net cost savings for the brick kiln and clean-burning stove BC measures. These account for ~50% of the BC measures’ impact.”).

94 Id. (“The regulatory measures on high-emitting vehicles and banning of agricultural waste burning, which require primarily political rather than economic investment, account for another 25%. Hence, the bulk of the BC measures could probably be implemented with costs substantially less than the benefits given the large valuation of the health impacts.”).

95 Id.

96 Shindell D. et al. (2012) *Simultaneously mitigating near-term climate change and improving human health and food security*, Sci. 335:183 (“Global impacts of measures on climate, agriculture, and health and their economic valuation. Valuations are annual values in 2030 and beyond, due to sustained application of the measures, which are nearly equal to the integrated future valuation of a single year’s emissions reductions (without discounting). Climate valuations for CH$_4$ use GWP100 and an SCC [social cost of carbon] of $265 per metric ton.”)

97 Id. (“Global impacts of measures on climate, agriculture, and health and their economic valuation. Valuations are annual values in 2030 and beyond, due to sustained application of the measures, which are nearly equal to the integrated future valuation of a single year’s emissions reductions (without discounting). Climate valuations for CH$_4$ use GWP100 and an SCC [social cost of carbon] of $265 per metric ton…. As noted in the main text, a GWP-based valuation neglects differences in the regional effects of these pollutants on temperatures, precipitation and sunlight available for photosynthesis relative to CO$_2$. As Figure 2 in the main text shows, regional effects can be quite distinct in the case of the BC measures. Additionally,
Primer on Short-Lived Climate Pollutants

the SCC includes some CO₂-specific factors such as fertilization of ecosystems which would not be present with forcing from methane or other short-lived species. As damages are often though to scale as a power of temperature change, there may also be somewhat less valuation of near-term changes than of later changes in a warmer future world and the climate valuation would grow more sharply with time for short lived species than for CO₂. Further work is clearly needed to better define appropriate techniques for valuation of non-CO₂ climate impacts.”

98 Id. (“Valuation of crop yield changes uses year 2000 global market prices from the Food and Agriculture Organization (faostat.fao.org)....”).

99 Id. (“Valuation of premature mortalities is based on the value of a statistical life (VSL) approach. The relationship between mortality risks and willingness-to-pay (WTP) is used to determine the VSL, which is an expression of the value that people affix to small changes in mortality risks in monetary terms. We employ the United States Environmental Protection Agency’s (USEPA) preferred VSL of $9,500,000 for 2030...Valuations in the main text are presented using country-specific VSLs.”) (internal citations omitted).

102 Proposed Amendment to the Montreal Protocol (submitted by the Federated States of Micronesia), (11 May 2012); see also Proposed Amendment to the Montreal Protocol (submitted by the United States, Canada, and Mexico), (9 May 2012).

103 The cumulative BAU emission from the 6 Kyoto gases from 2000-50 is about 975 GtC-eq (=650 x 1.5, Fig. 1, Scenario 6 (England et al.)), which is equivalent to approximately 3575 Gt CO₂-eq. The cumulative Kyoto-gas emission budget for 2000-50 is
Primer on Short-Lived Climate Pollutants

1500 GtCO₂-eq. if the probability of exceeding 2°C is to be limited to approximately 25% (Meinshausen et al., pg. 1160). Therefore, the total mitigation needed by 2050 is approximately 2075 GtCO₂-eq. The 87-147 GtCO₂-eq. from the proposed HFC phase-down represents 4-7% of the total mitigation needed by 2050, and up to 8% if all HFCs are replaced by low-GWP substitutes. England M. H. et al. (2009) *Constraining future greenhouse gas emissions by a cumulative target*, Proc. Nat’l. Acad. Sci. USA 106:16539; Meinshausen M. et al. (2009) *Greenhouse-gas emission targets for limiting global warming to 2°C*, Nat. 458:1158; and Velders G. J. M. et al. (2009) *The large contribution of projected HFC emissions to future climate forcing*, Proc. Nat’l. Acad. Sci. USA 106:10949.

Velders G. J. M. et al. (2009) *The large contribution of projected HFC emissions to future climate forcing*, Proc. Nat’l. Acad. Sci. USA 106:10949 (“Global HFC emissions significantly exceed previous estimates after 2025 with developing country emissions as much as 800% greater than in developed countries in 2050. Global HFC emissions in 2050 are equivalent to 9–19% (CO$_2$-eq. basis) of projected global CO$_2$ emissions in business-as-usual scenarios and contribute a radiative forcing equivalent to that from 6–13 years of CO$_2$ emissions near 2050. This percentage increases to 28–45% compared with projected CO$_2$ emissions in a 450-ppm CO$_2$ stabilization scenario business-as-usual scenarios from 2010 to 2050”).

California Air Resources Board, *Amendments to the Low-Emission Vehicle Program – LEV III*

US EPA (2012) 2017 and Later Model Year Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel Economy Standards, 40 CFR Parts 85, 86 and 600 (“In addition to the grams-per-mile CO$_2$-equivalent credits, for the first time the agencies are establishing provisions in the CAFE program that would account for improvements in air conditioner efficiency. Improving A/C efficiency leads to real-world fuel economy benefits, because as explained above, A/C operation represents an additional load on the engine. Thus, more efficient A/C operation imposes less of a load and allows the vehicle to go farther on a gallon of gas.”)

Climate and Climate Air Coalition to Reduce Short Lived Climate Pollutants, Partners.

C40 Cities Climate Leadership Group, Video: C40 Mayors Demonstrate Progress in Greenhouse Gas Reductions and Announce New Actions to Take on Climate Change, (27 June 2012).

Press Release, UNEP, New Climate and Clean Air Coalition Expands to 13 Members, (24 April 2012).

Id.

Barton-Dock M., Buying Time as the Climate Click Ticks on, World Bank Blogs, (19 July 2012).

Rachel Kyte, Doha: Keeping Hope Alive – Just, World Bank Blogs, (12 December 2012) (“At the Bank, we want to expand the
Primer on Short-Lived Climate Pollutants

SLCP-relevant part of our IDA/IBRD portfolio from 12 percent in 2012 to 15 percent by 2015 and 20 percent by 2020, and will work on payment for results for methane reduction. We also plan to increase impact on SLCPs through our GEF, Carbon Finance, Global Gas Flaring, and Montreal Protocol portfolios.”).

126 Global Alliance for Clean Cookstoves; Global Methane Initiative.
127 UNEP (2008) Atmospheric Brown Clouds: Regional Assessment Report with Focus on Asia, 3 (“1. Five regional ABC hotspots around the world have been identified: i) East Asia; ii) Indo-Gangetic Plain in South Asia; iii) Southeast Asia; iv) Southern Africa; and v) the Amazon Basin. By integrating and assimilating ABC surface observations with new satellite observations and chemistry transport model (CTM), the ABC Science Team produced global maps of ABC hotspots.
128 International Maritime Organization, Marine Environment Protection Committee (MEPC) IMO Environment Meeting Completes Packed Agenda (19 July 2011).