Primer on Hydrofluorocarbons

Fast action under the Montreal Protocol can limit growth of HFCs, prevent 100 to 200 billion tonnes of CO₂-equivalent emissions by 2050, and avoid up to 0.5°C of warming by 2100.

Institute for Governance & Sustainable Development

IGSD Working Paper: June 2014
Lead authors
Durwood Zaelke and Nathan Borgford-Parnell.

Contributing authors
Stephen O. Andersen, Xiaopu Sun, Dennis Clare, Claire Phillips, Stela Herschmann, Yuzhe Peng Ling, and Alex Milgroom.

Acknowledgements
We thank our outside reviewers for their valuable contributions.

About The Institute for Governance & Sustainable Development (IGSD)

IGSD’s mission is to promote just and sustainable societies and to protect the environment by advancing the understanding, development, and implementation of effective, accountable, and democratic systems of governance for sustainable development.

Beginning in 2005, IGSD embarked on a “fast-action” climate mitigation campaign that will result in significant reductions of greenhouse gas emissions and will limit temperature increase and other climate impacts in the near term. The focus is primarily on strategies to reduce non-CO₂ climate pollutants as a complement to cuts in CO₂, which is responsible for more than half of all warming. It is essential to reduce both non-CO₂ pollutants and CO₂. Neither alone is sufficient to limit the increase in global temperature to a safe level.

IGSD’s fast-action strategies include reducing emissions of short-lived climate pollutants—black carbon, methane, tropospheric ozone, and hydrofluorocarbons. They also include measures to capture, reuse, and store CO₂ after it is emitted, including biosequestration and mineralization strategies that turn carbon dioxide into stable forms for long-term storage without competing with food supply.

This HFC Primer also is available on IGSD’s web site (http://www.igsd.org) with active links to the references and periodic updates. IGSD’s Primer on Short-Lived Climate Pollutants also is available on IGSD’s web site. Unless otherwise indicated, all content in the Primer carries a Creative Commons license, which permits non-commercial re-use of the content with proper attribution. Copyright © 2014 Institute for Governance & Sustainable Development.
Table of Contents

1. Summary
2. High growth rates for HFCs will cause significant warming
3. Phasing down HFCs will prevent significant warming
4. Phasing down HFCs will catalyze significant gains in energy efficiency and additional climate benefits from CO2 reductions
5. Energy efficient alternatives to HFCs are available for all major sectors
6. Business support is growing to phase down HFCs and many companies are already taking action
7. National and regional policy support is growing to phase down HFCs
8. The Montreal Protocol has the experience and expertise to phase down HFCs
9. The consensus is growing to amend the Montreal Protocol to phase down HFCs
10. Conclusion

Figures and Tables

Fig. 1: Projected growth in HFCs and climate forcing from emissions
Fig. 2: By 2050 forcing from HFCs could equal 20-25% of the growth of CO2 forcing since 2000
Fig. 3: 21st Century warming prevented by SLCP and CO2 mitigation
Fig. 4: Climate protection from the Montreal Protocol and Kyoto Protocol
Fig. 5: Map of countries with existing HFC regulations
Fig. 6: Projected HFC emission reductions from Micronesian and North American proposals
Fig. 7: Map showing majority of world expressing support for HFC phase down, through March 2014
Table 1: 500-megawat power plants avoided by 2020 from super-efficient room A/C
Table 2: Indicative list of low-GWP alternatives to high-GWP HFCs
Table 3: Examples of corporate reductions of HFCs
Table 4: Select national and sub-national HFC regulations

Appendix

Background on IGSD’s fast-action campaign to phase down HFCs and other short-lived climate pollutants
Fast action under the Montreal Protocol can limit growth of HFCs, prevent 100 to 200 billion tonnes of CO₂-eq emissions by 2050, and avoid up to 0.5°C of warming by 2100.

1. Summary

The IPCC’s Fifth Assessment Report concludes that climate change is unequivocal, significantly caused by human activities, occurring faster and with impacts that are more severe than anticipated, and that urgent action is required to reduce climate pollutants. This Primer describes how the Montreal Protocol can be used to quickly reduce one category of climate pollutants, hydrofluorocarbons (HFCs), with further support from national and regional laws and institutions.

HFCs are the fastest growing greenhouse gases in much of the world, increasing at a rate of 10-15% per year. They are factory-made gases used in air conditioning, refrigeration, foam insulation, and other specialized sectors. World leaders recognized the threat posed by the growth of HFCs in the outcome document of the Rio +20 Summit in 2012 and called for the gradual phasedown of their production and consumption. Six countries, with the support of well more than 100 others, have submitted proposals to undertake such a phase down under the Montreal Protocol. Support for this approach is growing rapidly, including from the leaders of the G20 largest economies.

A fast phasedown of HFCs under the Montreal Protocol by 2020 would prevent up to 200 billion tonnes (Gt) of CO₂-equivalent (CO₂-eq) emissions by 2050, and avoid up to 0.5°C warming by 2100, using a treaty that requires developed countries to act first, provides implementation assistance to developing countries, and has the experience and expertise to ensure that reductions are fast, effective, and efficient. In addition, an HFC phasedown under the Montreal Protocol would catalyze significant energy efficiency gains in air conditioning and refrigeration systems, in the range of 30 to 60%, and significantly reduce CO₂ emissions. An HFC phasedown under the Montreal Protocol will provide a level playing field for producers and consumers in lieu of a patchwork of regional and national regulations. It also will build momentum for a successful climate agreement under the UNFCCC in 2015 to go into effect in 2020. Indeed, this simple step to protect the climate is the acid test for all multilateral climate efforts.

2. High growth rates for HFCs will cause significant warming

The current high growth rate for HFCs will cause significant future warming. See Figure 1. While HFCs have caused only 1% of total global warming to date, production, consumption, and emissions of these factory-made gases are growing at a rate of 10-15% per year, which will cause a doubling every five to seven years. The high projected growth rates are confirmed by atmospheric measurements. HFC growth is accelerating as they replace chlorofluorocarbons (CFCs), which were previously phased out under the Montreal Protocol, and hydrochlorofluorocarbons (HCFCs), which are now being phased out.

Fig. 1: Projected growth in HFCs and climate forcing from emissions

Without fast action, HFCs will increase as much as thirty-fold by 2050, from a forcing of 0.012 W/m² to as much as 0.40 W/m². Continued growth in HFCs will add up to 0.1°C of global average temperature rise by mid-century, which will increase up to five-fold to 0.5°C by 2100. HFCs and other fluorinated greenhouse gases, which include
sulfurhexafluoride (SF$_6$) and perfluorocarbons (PFCs), are the fastest growing climate pollutants in many countries, including the U.S., E.U., Australia, China, and India.10

If left unchecked, by 2050, annual HFC emissions could be equivalent to 12% of annual CO$_2$ emissions under a business-as-usual (BAU) scenario, and up to 75% of annual CO$_2$ emissions under the IPCC strongest mitigation scenario.11 Without fast action, by 2050, uncontrolled growth in HFCs would cancel much of the climate benefit achievable under an aggressive CO$_2$ 450 ppm mitigation scenario. (In Figure 2, compare radiative forcing reduced from CO$_2$ mitigation to radiative forcing increased from HFC growth.)

![Fig. 2: By 2050 forcing from HFCs could equal 20-25% of the growth of CO$_2$ forcing since 2000](image)

“Clearly, the contribution of HFCs to radiative forcing could be very significant in the future; by 2050, it could be as much as a quarter of that due to CO$_2$ increases since 2000 if the upper range HFC scenario is compared to the median of the SRES scenario [Special Report on Emissions Scenarios, establishing a baseline scenario]. Alternatively, the contribution of HFCs to radiative forcing could be one-fifth the radiative forcing due to CO$_2$ increases since 2000 if the upper range HFC scenario is compared to the upper range of the SRES scenario.” UNEP (2011) HFCs: A CRITICAL LINK IN PROTECTING CLIMATE AND THE OZONE LAYER – A UNEP SYNTHESIS REPORT.

Phasing out HFC production could also avoid the build-up of HFCs contained in existing refrigeration and air conditioning equipment, chemical stockpiles, foams, and other products, collectively known as ‘HFC banks,’ which slowly release the HFCs over a matter of decades.12 If uncontrolled, “the HFC bank grows to 39–64 GtCO$_2$-eq compared with an annual CO$_2$ emission of 12–74 GtCO$_2$-eq yr$^{-1}$ in 2050.”13

3. Phasing down HFCs will prevent significant warming

A fast phase down HFCs will avoid up to 200 billion tonnes of CO$_2$-eq by 2050,14 up to 0.5°C of warming by 2100 under the high HFC growth scenario, and up to 0.35°C under the low HFC growth scenario.15 Avoiding this warming is essential for staying within the long-term international goal of stabilizing global temperature rise at or below 2°C over pre-industrial temperatures by the end-of-century. See Figure 3.
Fig. 3: 21st Century warming prevented by SLCP and CO₂ mitigation

Figure 3 “[D]epicts model simulated temperature change under various mitigation scenarios that include CO₂ and SLCPs (BC, CH₄, HFCs). BAU case (red solid line with spread) considers both high and low estimates of future HFC growth. Note this uncertainty of temperature projection related to HFC scenarios is around 0.15°C at 2100. The vertical bars next to the curve show the uncertainty of temperature projection at 2100 due to climate sensitivity uncertainty.” Xu Y., Zaelke D., Velders G. J. M., & Ramanathan, V. (2013) *The role of HFCs in mitigating 21st century climate change.* Atmos. Chem. Phys. 13:6083-6089.

Phasing down HFCs will prevent the equivalent of up to 8.8 Gt of CO₂ per year in emissions by 2050; by 2050, the cumulative total will be equivalent to between 87-146 Gt of CO₂ in avoided emissions. See Section 9. An additional amount equivalent to 50 Gt CO₂ (39–64 Gt) trapped in HFCs banks can be avoided by 2050 if HFC production is phased out by 2020, for a total of up to 200 or more Gt of CO₂-eq. See Figure 4, far right bar.

Fig. 4: Climate protection from the Montreal Protocol and Kyoto Protocol

D. Zaelke et al., IIGSD, June 2014.
Fast mitigation of HFCs combined with mitigation of the other short-lived climate pollutants (SLCPs) — black carbon, methane, and tropospheric ozone — can avoid 0.6°C of future warming by 2050, and up to 1.5°C by end-of-century, with HFC mitigation contributing one-third of the avoided warming by end-of-century. See Figure 3.

Fast action to phase down all four SLCPs “would cut the cumulative warming since 2005 by 50% at 2050 and by 60% at 2100… Based on our high HFC growth scenarios, the contribution to the avoided warming at 2100 due to HFC emission control is about 40% of that due to CO₂ emission control.”

Reducing HFCs and the other SLCPs can significantly reduce future climate impacts, including slowing sea-level rise. Recent research led by Professor Veerabhadran Ramanathan at Scripps Institution of Oceanography, University of California, San Diego, calculates that reducing SLCPs can reduce the rate of sea-level rise by almost 20% by 2050 and nearly 25% by 2100; adding immediate and aggressive CO₂ mitigation can double the end-of-century reductions. Combined SLCP and CO₂ mitigation can reduce cumulative sea-level rise by 31% in 2100. Individual contributions to avoided sea-level rise by 2100 from different mitigation actions are: 29% from CO₂ mitigation and 71% from SLCP mitigation (13% from HFC mitigation, 17% from black carbon mitigation, and 41% from methane mitigation).

4. Phasing down HFCs will catalyze significant gains in energy efficiency and additional climate benefits from CO₂ reductions

In addition to the direct climate benefits from HFC mitigation, a global HFC phasedown will catalyze additional climate benefits through improvements in the energy efficiency of the refrigerators, air conditioners, and other products and equipment that use HFC refrigerants. These efficiency gains will significantly reduce CO₂ emissions. Depending on the application, generation mix, and fuel type, emissions from generating electricity account for between 70-95% of total climate emissions attributable to products using refrigerants.

The phase out of CFCs under the Montreal Protocol, which began in the mid-1980s, catalyzed substantial improvements in air conditioning and refrigerant energy efficiency—up to 60% in some subsectors. These efficiency improvements were the result of replacing old products and equipment with a new generation of higher efficiency machines. When refrigeration and air conditioning manufacturers redesigned their systems to be CFC-free, many took the opportunity to improve the efficiency of their designs. For example, the U.S. EPA estimated that CFC-free chillers were up to 50% more energy efficient in the case studies ranged from 15% up to 30%, and the carbon footprint reductions ranged from 60% to 85%.

Similar energy efficiency improvements are expected with an HFC phasedown. Recent demonstration projects done by the Climate and Clean Air Coalition to Reduce Short-Lived Climate Pollutants (CCAC) to Reduce Short-Lived Climate Pollutants on commercial refrigeration where high-Global Warming Potential (GWP) HFCs were replaced by climate friendly alternatives showed significant energy savings and significant reductions in the carbon footprint of the commercial stores. The energy savings in the case studies ranged from 15% up to 30%, and the carbon footprint reductions ranged from 60% to 85%.

A number of global companies that are already transitioning away from HFCs report significant gains in energy efficiency. For example, the Coca-Cola Company and PepsiCo have both reported energy efficiency gains of up to 47% in their new CO₂ and hydrocarbon-based refrigeration equipment over baseline HFC-based models. Global supermarket chains Tesco and Unilever both report a 10% gain from new hydrocarbon-based commercial refrigeration equipment and freezer cabinets over HFC-models.

Although there have already been improvements in the efficiency of air-conditioning and refrigeration equipment over the last several decades, substantial potential still remains. For example, a 2013 assessment by the Super-efficient Equipment and Appliance Deployment Initiative (SEAD) found that deploying super-efficient room air conditioners can significantly reduce energy use and CO₂ emissions by 2020 and avoid the need for approximately 123 medium-sized (500-megawatt) power plants, with the largest potential savings in India, China, and the E.U. A recent study by the U.S. Department of Energy’s Lawrence Berkeley National Laboratory calculates that in India alone, the potential energy savings from improving the energy efficiency of room air conditioning could avoid the equivalent of 120 new medium-sized coal power plants by 2030.

The energy efficiency gains catalyzed by the HFC amendment will have the added benefit of easing pressure on overloaded electricity grids, especially in developing countries where air conditioning use is growing rapidly; in many cities in India, for example, air conditioning accounts for 40% to 60% of peak electricity demand during the cooling season. The efficiency gains also would lower the cost of operating the equipment and save consumers money.
Table 1: 500-megawatt power plants avoided by 2020 from super-efficient room A/C

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>ECONOMICALLY JUSTIFIED 2020 ENERGY SAVINGS (3Twh/year)*</th>
<th>TECHNICALLY POSSIBLE 2020 ENERGY SAVINGS (3Twh/year)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>India</td>
<td>19</td>
<td>29</td>
</tr>
<tr>
<td>China</td>
<td>16</td>
<td>33</td>
</tr>
<tr>
<td>E.U.</td>
<td>11</td>
<td>30</td>
</tr>
<tr>
<td>Japan</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Brazil</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>UAE</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Korea</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Australia</td>
<td>0.35</td>
<td>2</td>
</tr>
<tr>
<td>U.S.A.</td>
<td>0.2</td>
<td>0.24</td>
</tr>
<tr>
<td>Mexico</td>
<td>0.15</td>
<td>1</td>
</tr>
<tr>
<td>Russia</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Canada</td>
<td>0</td>
<td>0.24</td>
</tr>
<tr>
<td>Total</td>
<td>64</td>
<td>123</td>
</tr>
</tbody>
</table>

* 3Twh/year is roughly equivalent to one 500 MW power plant or 1.77 million barrels of diesel.

5. Energy efficient alternatives to HFCs exist in almost every sector

Low-GWP alternatives to high-GWP HFCs are widely and increasingly available (see Table 2). Alternatives to existing high-GWP HFCs fall into two basic categories: non-fluorinated substances with low-GWP, and fluorinated substances with low- to mid-range GWPs. The Montreal Protocol’s TEAP uses the term “low-GWP” to refer to refrigerants with GWPs of 300 or lower while “moderate-GWP” refers to refrigerants with GWPs of 1,000 or lower. For comparison, the GWP100,yr of HFC-134a, one of the most commonly used high-GWP HFC refrigerants today, is 1,300. TEAP cautions that differences in energy efficiency could determine which “low-GWP” or “moderate-GWP” alternatives would have the lowest overall impact on global warming. The most comprehensive way to evaluate the climate impact of any proposed refrigerant is to use Life Cycle Climate Performance (LCCP) methodology to calculate “cradle-to-grave” climate emissions for a particular refrigerant and application. LCCP was developed by TEAP and U.S. EPA and includes direct and indirect climate emissions, energy embodied in product materials, climate emissions during chemical manufacturing, and end-of-life loss (typically refrigerant leakage). See Section 4 for a discussion of the energy efficiency gains that will be catalyzed by an HFC phasedown.

Commercially available non-fluorinated or “natural refrigerants” primarily include ammonia with a GWP of near zero, hydrocarbons (e.g., propane and isobutene) with GWPs of less than four, and CO2 with a GWP of one. Alternative fluorinated substances include primarily the low-GWP HFCs, also known as “HFOs”, including HFC-1234yf and HFC1234ze.e. According to the IPCC’s Fifth Assessment Report (AR5) these new low-GWP HFC alternatives have a GWP100,yr of less than one. Another alternative is HFC-32, which has a GWP100,yr of 677 according to AR5. There are other alternative methods and processes that do not involving chemical refrigerants. These are termed “not-in-kind” alternatives.

In the mobile air conditioning sector, which represents up to half of HFC emissions on a CO2-eq basis, available low-GWP alternatives include HFC-1234yf, CO2, and HFC-152a (AR5 GWP100,yr =138). Currently, more than a dozen vehicle manufacturers in Europe, Japan, and North America have vehicles with the low-GWP refrigerant HFC-1234yf in the global market. Several German car manufacturers announced in March 2013 that they are developing CO2 as a low-GWP alternative for vehicle air-conditioning. In Norway, approximately 16% of new refrigerated truck and trailer systems were equipped with HFC-free refrigeration systems in 2011; use of these systems is expected to expand further in the future.

In commercial refrigeration, globally, up to 65% of new installations are using low-GWP HFC alternatives, including CO2, ammonia, and hydrocarbons, while in the domestic refrigeration sector, low-GWP hydrocarbon technology is expected to reach about 75% of global production by 2020. See Table 3 for examples of companies that have already made the switch to low-GWP alternatives in the refrigeration sector.
In the room air conditioning sector, thousands of hydrocarbon units have been sold and new production lines are coming on line each year. The Indian manufacturer, Godrej, and the Chinese manufacturer, Gree, have developed models of propane (HC-290) room air conditioners. The Godrej models are up to 11% more efficient than the minimum requirements for the 5-Star energy efficiency rating set by the Indian Bureau of Energy Efficiency. China, Japan, India, Indonesia, and other countries have projects underway using moderate-GWP HFC-32 with high levels of operating efficiency. CO₂ air conditioning prototypes are also available.

In the foam sector, low-GWP alternatives include hydrocarbons, CO₂/water, and fibrous materials. Hydrocarbons and CO₂/water make up 28% to 76% of the global market for new polyurethane foam products, while fibrous materials comprise 59% of the new market for insulation in Western Europe. HFC-1233zd(E) is a liquid blowing agent that has a GWP of about one, and is up to 12% more energy efficient than leading hydrocarbon alternatives, according to the companies making it. Companies are developing additional low-GWP HFC alternatives and a number of developing country Parties intend to adopt low-GWP alternatives for foam products as part of their HCFC phase out plans.

In all major sectors, the best available low-GWP alternatives to high-GWP HFCs demonstrate at least equal, and often greater, energy efficiency than the HFCs they replace — up to 30%. A 2011 study for the European Commission concluded that technically feasible and cost-effective low-GWP alternatives exist for all major HFC subsectors. This analysis, which was prepared in association with industry, research institutes, and other technical experts, analyzed HFC alternatives available in 26 subsectors; all alternatives identified achieved at least equal energy efficiency and more often resulted in energy savings compared to commercially available HFC-based equipment.

The TEAP also concluded that low-GWP alternatives are available that achieve equal or superior energy efficiency in a number of sectors stating, “hydrocarbon and ammonia systems are typically 10-30% more energy efficient than conventional high-GWP HFC systems.”

Tests of room air conditioning utilizing hydrocarbon refrigerants showed energy improvements of up to 20% over HFC models. Fluorinated refrigerant producers also report high levels of energy efficiency with use of their air conditioning products, particularly in hot climates. In Japan, an HFC-32 room air conditioner was awarded the 2012 Grand Prize for Excellence in Energy Efficiency and Conservation and the prestigious “Top Runner” designation as the most energy efficient room air conditioning available. In the commercial refrigeration sector, supermarkets are improving energy efficiency by 15-30% when they switch to low-GWP alternatives. For example, Sobeys, Canada’s second largest food retailer found that the new CO₂ transcritical system used 18% to 21% less energy than the high-GWP HFC equipment it replaced.

Other not-in-kind alternatives are available for some applications, such as district cooling, which relies on water chilled in high efficiency central plants to cool a large number of buildings. If powered by renewable sources of energy, such as hydroelectric, wind, or solar, this type of cooling system can have virtually no climate impact.

There are many other alternatives in the research and development pipeline waiting for the right market signals. A decision to phase down HFCs under the Montreal Protocol will provide a definitive signal to industry to accelerate development and deployment of additional climate-friendly alternatives.
6. Business support is growing to phase down HFCs and many companies are already taking action

Business support is growing for phasing down HFCs.73 The Consumer Goods Forum, a global network of over 400 retailers, manufacturers, and service providers from over 70 countries, has pledged that its members will begin phasing out HFCs by 2015.74 Other industry groups support reducing HFCs under the Montreal Protocol, including the Air-Conditioning, Heating and Refrigeration Institute,75 the European Fluorocarbon Technical Committee,76 and Refrigerants, Naturally!.77 The Alliance for Responsible Atmospheric Policy, whose 48 members include Trane, Whirlpool, Sub-Zero, and Mitsubishi, also supports a global phasedown of high-GWP refrigerants.78

Individual companies across the value chain are developing and implementing alternative refrigerants. DuPont endorses the HFC phasedown under the Montreal Protocol,79 and DuPont and Honeywell, both manufacturers of HFCs, are actively developing lower GWP alternative refrigerants and have several currently being commercialized,80 as discussed in Section 5 above. The Climate and Clean Air Coalition has produced a series of case studies demonstrating HFC alternatives developed and utilized by supermarket industry leaders, including Carrefour, H-E-B, and Supermercad.81

On the retailer and point-of-sale side, the companies in Refrigerants, Naturally!, including Coca-Cola, PepsiCo, Red Bull, and Unilever, are taking action to eliminate the use of HFCs within their respective companies.82 Coca-Cola began using HFC-free insulation for new beverage vending equipment, which reduced direct HFC emissions by 75%, identified a feasible natural refrigerant, and pledged to eliminate HFCs in all new equipment by 2015.83 PepsiCo, Red Bull, Unilever, and Carrefour started installing a substantial amount of natural refrigerant point-of-sale equipment.84 Individual companies in the Consumer Goods Forum, including Wal-Mart, Nestlé, Sobeys, Supervalu, and Tesco are purchasing alternative refrigerant equipment, converting existing equipment, and improving efficiency while reducing leakage.85 Whirlpool announced that it will convert all foam blowing agents in from the current HFC-245fa (GWP$_{100\text{yr}}$ = 85886) to HFC-123zd(E) (GWP$_{100\text{yr}}$ = -187) in the manufacture of refrigerators and freezers sold in North America, a reported reduction in GWP of 99.9%, by the end of 2014.88 Table 3 summarizes several of these measures.
Table 3: Examples of corporate reductions of high-GWP HFCs

<table>
<thead>
<tr>
<th>COMPANIES</th>
<th>ACHIEVEMENTS & GOALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PepsiCo</td>
<td>240,000 HFC-free units</td>
</tr>
<tr>
<td></td>
<td>HFC-free equipment in 30 countries with 100% natural refrigerants in Turkey since 2009 and Russia since 2011</td>
</tr>
<tr>
<td>The Coca-Cola Company</td>
<td>1,000,000 HFC-free units as of January 2014</td>
</tr>
<tr>
<td></td>
<td>100% HFC-free insulating foam for new refrigeration equipment</td>
</tr>
<tr>
<td></td>
<td>100% HFC-free new cold drink equipment purchases by 2015</td>
</tr>
<tr>
<td>Red Bull</td>
<td>457,000 ECO-Coolers (more than 50% of all units) as of the end of 2013</td>
</tr>
<tr>
<td></td>
<td>Procurement 100% hydrocarbon since 2010</td>
</tr>
<tr>
<td>Unilever</td>
<td>800,000 HFC-free freezers in 2012</td>
</tr>
<tr>
<td></td>
<td>Working with their subsidiary Ben & Jerry’s to roll out hydrocarbon ice cream freezers in U.S.</td>
</tr>
<tr>
<td>McDonalds</td>
<td>3,300 HFC-free meat freezers, frozen food storage, reach-ins & salad refrigerated display cases 2012. Investing in ammonia industrial refrigeration in U.S.</td>
</tr>
<tr>
<td>Nestlé</td>
<td>11,000 hydrocarbon ice cream freezers in Europe, Australia, Spain, Malaysia, Chile, and the U.S.</td>
</tr>
<tr>
<td></td>
<td>Nestlé uses natural refrigerants in 90% of its industrial food processing refrigeration</td>
</tr>
<tr>
<td>Heineken</td>
<td>130,000 hydrocarbon refrigerated beverage displays</td>
</tr>
<tr>
<td></td>
<td>Aiming for 50% reduction in carbon footprint of installed refrigerators by 2020</td>
</tr>
<tr>
<td>Sobeys</td>
<td>“Natural Refrigerant Commitment” requires that CO₂ refrigeration systems are installed in all new full-service stores</td>
</tr>
<tr>
<td>Whirlpool</td>
<td>HFC-1233zd(E) in all U.S. refrigerator and freezer manufacturing facilities by end of 2014</td>
</tr>
<tr>
<td></td>
<td>Equivalent to removing more than 400,000 cars from the road</td>
</tr>
</tbody>
</table>

7. National and regional policy support is growing to phase down HFCs

Support to phase down HFCs is growing at the national and regional levels. See Figure 5 and Table 4. In May 2014, the State Council of China announced that they were strengthening management of HFC emissions and accelerating the destruction and replacement of HFCs, as part of the action plan to implement the energy conservation and emission reduction targets in their current five-year plan. The State Council announced that the total emission reduction of HFCs should reach 0.28 Gt CO₂-eq during the twelfth five-year period, which concludes at the end of 2015. The E.U. f-gas regulations, which received final approval on 14 April 2014 and take effect on 1 January 2015, will phase down HFCs by 80% by 2030. In addition, as part of its regulatory regime to control f-gases, the European Directive on mobile air conditioning systems requires the use of f-gases with GWPs less than 150; new type vehicles sold in the E.U. are covered as of 1 January 2013, and all vehicles sold in the E.U. will be covered by 2017.

![Fig. 5: Map of countries with existing HFC regulations](image)
The Montreal Protocol has universal contribut
CFCs and related chemicals
CO
and are used in the same sectors as the
effective, and efficient phasedown of HFCs, which are in the same family of gases, have similar chemical properties
emissions under the Kyoto Protocol.
phasedown of their production and consumption under the Montreal Protocol as a complement to controls on
At the international level, there is growing recognition that HFCs can be most effectively controlled through the
identifying policies and measures to a
Bangladesh, Chile, Colombia, Ghana, Indonesia, and Nigeria are developing national
target
The CCAC, a coalition of countries, international organizations, international financial institutions, and NGOs, is
targeting HFCs as part of its global effort to accelerate and scale-up action to reduce SLCPs. Through the CCAC,
Bangladesh, Chile, Colombia, Ghana, Indonesia, and Nigeria are developing national-level inventories of HFCs and
identifying policies and measures to avoid the growth of high-GWP HFCs.

Table 4: Select national and sub-national HFC regulations

<table>
<thead>
<tr>
<th>TYPE OF HFC REGULATION</th>
<th>COUNTRIES/REGIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxation</td>
<td>Norway, Denmark, Sweden, Slovenia, Poland, Spain, France</td>
</tr>
<tr>
<td>Carbon price on HFCs</td>
<td>New Zealand</td>
</tr>
<tr>
<td>Mandatory registration, reporting, leak detection and storage of records</td>
<td>U.S. (California), Germany, Sweden, the Netherlands, Hungary, Poland, Slovakia, Czech Republic, France, Canada</td>
</tr>
<tr>
<td>Certification requirements for companies and personnel</td>
<td>France, the Netherlands, Australia</td>
</tr>
<tr>
<td>Disposal and destruction requirements</td>
<td>Japan, U.S. (California), Sweden, Germany</td>
</tr>
<tr>
<td>Restrictions of usage through imposition of maximum emission threshold, annual leakage rates or minimum charges of f-gases</td>
<td>The Netherlands, Germany, Belgium, Luxembourg, Denmark, France, Switzerland</td>
</tr>
<tr>
<td>Regulations of manufacturing and usage</td>
<td>Japan, U.S. (California), China, Australia</td>
</tr>
<tr>
<td>Establishment of national databases</td>
<td>Hungary, Slovenia, Estonia, China, Australia</td>
</tr>
<tr>
<td>Ban on usage</td>
<td>Switzerland (HFCs in several AC and refrigeration applications), Denmark</td>
</tr>
<tr>
<td>Prioritization of climate-friendly HFC alternatives</td>
<td>China, U.S., Indonesia</td>
</tr>
<tr>
<td>Fiscal incentives for destruction</td>
<td>Australia</td>
</tr>
<tr>
<td>Voluntary code of practice</td>
<td>U.S.</td>
</tr>
<tr>
<td>Education program</td>
<td>U.S. (California), Austria, Belgium, Japan</td>
</tr>
</tbody>
</table>

* Proposed legislation.

8. The Montreal Protocol has the experience and expertise to phase down HFCs

At the international level, there is growing recognition that HFCs can be most effectively controlled through the
phasendown of their production and consumption under the Montreal Protocol as a complement to controls on
emissions under the Kyoto Protocol. The Montreal Protocol has the experience and expertise to ensure a fast,
effective, and efficient phasedown of HFCs, which are in the same family of gases, have similar chemical properties,
and are used in the same sectors as the CFCs already phased out and the HCFCs currently being phased out. Because all CFCs and HCFCs are also greenhouse gases, between 1990 and 2010 the Montreal Protocol reduced
CO2-eq emissions nearly twenty times more than the 5 to 10 Gt CO2-eq reduction goal of the first commitment period of the Kyoto Protocol. See Figure 4. Sophisticated statistical analysis confirms that the successful phaseout of CFCs and related chemicals by the Montreal Protocol, along with reductions of methane, slowed climate change and contributed to a lower rate of global warming since the early 1990s.

The Montreal Protocol has universal membership and provides robust implementation of the principle of “common
but differentiated responsibilities. This includes having developed country Parties undertake control measures first, followed by typical grace periods of 10 to 19 years before developing country Parties are subject to control measures, with funding for the agreed incremental cost of the developing country phaseout provided by the developed country Parties through the Multilateral Fund (MLF). Since it was established in 1991, the MLF has provided more than U.S. $3 billion in funding. The Montreal Protocol has an in-depth understanding of all sectors it finances, including detailed knowledge of technical options. The Montreal Protocol also supports institutional strengthening for all 147 developing country Parties. The combination of these features has allowed all Parties to comply with the control measures; to date, the Parties have phased out 97% of nearly 100 damaging chemicals.

The orderly and transparent schedule for phasing out chemicals under the Montreal Protocol allows time for markets to innovate and adjust, often resulting in significant cost and technical efficiencies. The Montreal Protocol also provides “essential use” and “critical use” exemptions that allow continued use of a chemical when environmentally acceptable alternatives are not yet available.

In sum, the Montreal Protocol can provide fast, effective, and efficient reductions of upstream production and consumption of HFCs, while downstream emissions would remain with the Kyoto Protocol, as would measurement and reporting.

9. The consensus is growing to amend the Montreal Protocol to phase down HFCs

Two similar proposals were submitted in May 2014 to amend the Montreal Protocol to phase down high-GWP HFCs, one by the Federated States of Micronesia, and the other by the U.S., Canada, and Mexico. The amendments would reduce 85-90% of HFC production and consumption and provide climate mitigation equivalent to more than 100 Gt CO₂ emissions by 2050 (range of 87-146 Gt), at very low cost, estimated at less than ten cents per CO₂-equivalent tonne. See Figure 6.

![Fig. 6: Projected HFC emission reductions from Micronesian and North American proposals](image)

The North American proposal and the Micronesian proposal are similar; both decrease the cumulative (2013-2050) direct GWP-weighted emissions of HFCs to 22-24 Gt CO₂-equivalent from 110-170 Gt CO₂-equivalent, for a total of ~87 to 146 Gt CO₂-equivalent in mitigation. This is equivalent to a reduction from projected annual emissions of 5.5 to 8.8 Gt CO₂-equivalent/yr in 2050 to less than ~0.3 Gt CO₂-equivalent/yr. Prepared for IGSD by Dr. Guus Velders, based on Velders G. J. M. et al. (2009) The large contribution of projected HFC emissions to future climate forcing. PROC. NAT’L. ACAD. SCI. U.S.A. 106:10949-10954.

Total mitigation could be the equivalent of up to 200 Gt CO₂ if the HFC phasedown were done by 2020. See section 3, above. An HFC amendment would substantially eliminate the global warming caused by one of the six main Kyoto Protocol greenhouse gases and significantly improve the chances of staying below the 2°C guardrail, providing up to 6-10% of the needed mitigation. See Figure 4.

Support for the addressing HFCs had grown rapidly. On 10 July 2009 in L’Aquila, Italy, the leaders of the G8
recognized “that the accelerated phase-out of HCFCs mandated under the Montreal Protocol is leading to a rapid increase in the use of HFCs, many of which are very potent GHGs,” and committed to “work with our partners to ensure that HFC emissions reductions are achieved under the appropriate framework.” ¹⁵⁷

On November 2009, 39 countries signed the Declaration on High-GWP alternatives to ODSs calling on the parties to the Montreal Protocol to “urgently consider phasing-down the production and consumption of high-GWP alternatives,” including HFCs, and “take appropriate measures … as soon as practicable.” ¹⁵⁸

By the end of 2010, 108 Parties to the Montreal Protocol signed the Bangkok Declaration, calling for the use of low-GWP alternatives to CFCs and HCFCs.¹⁵⁹ Through May 2013, 112 Parties joined the even stronger Bali Declaration on Transitioning to Low Global Warming Potential Alternatives to Ozone Depleting Substances.¹⁶⁰

On 17 February 2012, the United States, Mexico, Canada, Ghana, and Bangladesh, along with the UN Environment Programme launched the CCAC to catalyze major reductions in SLCPs with an initial focus on black carbon, methane, and HFCs.¹⁶¹

On 19 May 2012, the leaders of the G8 in Camp David, U.S., agreed to join the CCAC and develop “strategies to reduce short term pollutants – chiefly methane, black carbon, and hydrofluorocarbons.”¹⁶²

On 22 June 2012, at the conclusion of the Rio + 20 UN Conference on Sustainable Development, more than one hundred heads of State adopted the conference declaration, The Future We Want, recognizing the climate threat from HFCs and calling for the gradual phasedown of their production and consumption; the UN General Assembly adopted the declaration by resolution on 11 September 2012.¹⁶³

On 19 April 2013, China agreed to completely phase out HCFCs over the next 17 years, which is expected to cut the equivalent of 8 Gt of CO₂ at a total cost of $385 million, or about $0.05 per tonne.¹⁶⁴ The Montreal Protocol’s HCFC phaseout will eliminate HFC production from emissive uses in developed country Parties by 2030 and in developing country Parties by 2040, and this agreement will give China the opportunity to choose low-GWP alternatives in lieu of HFCs to ensure that the climate benefits are realized.¹⁶⁵

On 15 May 2013, the Arctic Council countries, including the Russian Federation, issued the Kiruna Declaration in which they “Urge the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer to take action as soon as possible, complementary to the UNFCCC, to phase-down the production and consumption of hydrofluorocarbons, which contribute to the warming of the Arctic region…”¹⁶⁶

On 8 June 2013, China’s President Xi Jinping and U.S. President Barack Obama agreed to “work together and with other countries to use the expertise and institutions of the Montreal Protocol to phase down the consumption and production of hydrofluorocarbons (HFCs).”¹⁶⁷ On 25 June 2013, President Obama announced his Climate Action Plan, which includes phasing down HFCs under the Montreal Protocol, as well as taking action in the U.S. to control HFCs.¹⁶⁸

On 26 June 2013, at the mid-year Open-Ended Working Group meeting of the Montreal Protocol in Bangkok, the Parties established a formal Discussion Group to discuss the management of HFCs under the Protocol.¹⁶⁹

On 28 June 2013 the BASIC countries (Brazil, South Africa, India, and China) noted in their Joint Statement that they would “work multilaterally to find an agreed way” to address HFCs:

“Ministers emphasized that HFCs are greenhouse gases covered under the UNFCCC and its Kyoto Protocol and shall accordingly be addressed in accordance with its principles and provisions. They agreed to work multilaterally to find an agreed way forward on this issue.”¹⁷⁰

On 10 July 2013, the U.S.-China Climate Change Working Group agreed to work together to “implement the agreement on hydrofluorocarbons (HFCs) reached by President Obama and President Xi at their meeting on June 8, 2013, in Sunnylands, California.”¹⁷¹

On 12 July 2013, fourteen Pacific small island developing states (SIDS) called for action under the Montreal Protocol to phase down HFCs. In the Nadi Outcome Document of the Pacific SIDS Regional Preparatory Meeting for the Third International Conference on Small Island Developing States, these fourteen nations “agreed that the Montreal Protocol be utilized to undertake the gradual phasedown of production and consumption of HFCs called for in the Rio + 20 outcome document, The Future We Want.”¹⁷²

On 3 September 2013, the 33 State partners of the CCAC and the European Commission agreed to “work toward a phasedown in the production and consumption of HFCs under the Montreal Protocol.” The Coalition’s State partners also agreed to “adopt domestic approaches to encourage climate-friendly HFC alternative technologies,” and to “work with international standards organizations to revise their standards to include climate-friendly HFC alternatives.”¹⁷³
On 6 September 2013, on the margins of the G20 Summit in St. Petersburg, Chinese President Xi Jinping and U.S. President Barack Obama agreed to open formal negotiations on the amendment to phase down HFCs under the Montreal Protocol:

“We reaffirm our announcement on June 8, 2013 that the United States and China agreed to work together and with other countries through multilateral approaches that include using the expertise and institutions of the Montreal Protocol to phase down the production and consumption of HFCs, while continuing to include HFCs within the scope of UNFCCC and its Kyoto Protocol provisions for accounting and reporting of emissions. We emphasize the importance of the Montreal Protocol, including as a next step through the establishment of an open-ended contact group to consider all relevant issues, including financial and technology support to Article 5 developing countries, cost effectiveness, safety of substitutes, environmental benefits, and an amendment. We reiterate our firm commitment to work together and with other countries to agree on a multilateral solution.”

On 6 September 2013, the leaders of the world’s twenty largest economies, as well as heads of State from six invited observer States, expressed their support in the St. Petersburg G20 Leaders’ Declaration for initiatives that are complementary to efforts under the UNFCCC, including using the expertise and institutions of the Montreal Protocol to phase down the production and consumption of HFCs, while retaining HFCs within the scope of the UNFCCC and its Kyoto Protocol for accounting and reporting of emissions:

“We are committed to support the full implementation of the agreed outcomes under the United Nations Framework Convention on Climate Change (UNFCCC) and its ongoing negotiations…. We also support complementary initiatives, through multilateral approaches that include using the expertise and the institutions of the Montreal Protocol to phase down the production and consumption of hydrofluorocarbons (HFCs), based on the examination of economically viable and technically feasible alternatives. We will continue to include HFCs within the scope of UNFCCC and its Kyoto Protocol for accounting and reporting of emissions.”

On 16 September 2013, Ministers representing BASIC countries agreed that HFCs should be dealt with through relevant multilateral fora guided by the principles and provisions of the UNFCCC:

“Ministers agreed that hydrofluorocarbons (HFC) should be dealt with through relevant multilateral fora, guided by the principles and provisions of UNFCCC and its Kyoto Protocol. The availability of safe and technically and economically viable alternatives and the provision of additional financial resources by developed countries should also be taken into account.”

On 27 September 2013, Indian Prime Minister Manmohan Singh and U.S. President Barack Obama agreed to immediately convene discussions of phasing down HFCs under the Montreal Protocol, leaving accounting and reporting of emissions in the UNFCCC:

“The two leaders agreed to immediately convene the India-U.S. Task Force on hydrofluorocarbons (HFCs) to discuss, inter alia, multilateral approaches that include using the expertise and the institutions of the Montreal Protocol to phase down the consumption and production of HFCs, based on economically-viable and technically feasible alternatives, and include HFCs within the scope of the United Nations Framework Convention on Climate Change (UNFCCC) and its Kyoto Protocol for accounting and reporting of emissions…. They also supported complementary initiatives, through multilateral approaches that include using the expertise and the institutions of the Montreal Protocol to phase down the production and the consumption of HFCs, based on the examination of economically viable and technically feasible alternatives. They will continue to include HFCs within the scope of UNFCCC and its Kyoto Protocol for accounting and reporting of emissions.”

“Recognizing that climate change is a defining challenge of our time and that there are mutual benefits to intensifying cooperation,” the two leaders also announced an India-U.S. Climate Change Working Group “to develop and advance action-oriented cooperation, as well as to begin an enhanced dialogue focusing on working closely in developing an ambitious climate change agreement for the post-2020 period.”

The U.S.-India climate cooperation also will include a focus on improving the efficiency of air conditioning in India, which has the potential to avoid as many as 120 large power plants by 2030:

“Space Cooling Efficiency Collaboration: Demand for space cooling – primarily for air conditioners – constitutes a large portion of peak electricity demand in India. Air conditioners could add as much as 140 GW to peak load by 2030 and management of the peak contribution is critical for maintaining supply security and avoiding load shedding. The new U.S.-India Collaboration on Smart and Efficient Air
Conditioning and Space Cooling is intended to advance policies and innovation to drive mass deployment and rapid uptake of high-efficiency cooling equipment and technologies to capture significant energy savings, potentially avoiding the need to build as many as 120 large power plants.”

See Section 4 for a further discussion of benefits of super-efficient room air conditioning.

At the 25th Meeting of the Parties to the Montreal Protocol, which took place from 21 to 25 October 2013 in Bangkok, countries continued to make progress on an international agreement to phase down HFCs under the Montreal Protocol. Significantly, the Africa Group, including South Africa, announced its support for “formal negotiations to enable the amendment process.” Jordan also demonstrated support for discussion of the amendment proposals, calling them “logical and well understood.” Delegates reconvened the formal Discussion Group on HFC Management, this time with a broader mandate that included consideration of the high-level agreements to phase down HFCs made in preceding months. The formal Group met several times and proposed several ways forward for action on HFCs, including holding extra working meetings in 2014 to consider the amendment proposals. Brazil and China continued to engage constructively as well, and both played an important role in writing a detailed request to the Protocol’s Technology and Economic Assessment Panel (TEAP) to conduct additional research on HFCs and their alternatives. India, along with several other countries, expressed concern over whether technology was available and whether developed countries would be willing to pay for the transition in developing countries as required by the Montreal Protocol. These and other concerns will be addressed in 2014 as the Amendment negotiations move forward.

At the 21st E.U.-Japan summit, on 19 November 2013 in Tokyo, the E.U. and Japan emphasized the importance of the HFC phasedown under the Montreal Protocol:

“[T]hey underlined the contribution of international cooperative initiatives to the additional mitigation effort to narrow the existing gap between emission reduction pledges and what is needed according to science. In particular, they stressed the need for rapid progress on the phasedown of HFCs and for its close consideration as one of the issues to be addressed in the context of the Montreal Protocol.”

On 5 December 2013, U.S. and China reaffirmed the agreements on HFCs by Presidents Obama and President Xi Jinping from June 8, 2013 and September 6, 2013:

“Today, both countries reaffirmed the agreements reached by leaders regarding phasing down the production and consumption of the highly potent greenhouse gas hydrofluorocarbons (HFCs) using the expertise and institutions of the Montreal Protocol and to take next steps in the process, including the establishment of an open-ended contact group in the Montreal Protocol.”

On 11 February 2014, following President Hollande’s State visit with President Obama, the White House emphasized that “France is also an important partner in the global effort to phase down production and consumption hydrofluorocarbons (HFCs) using the institutions and expertise of the Montreal Protocol.”

On 19 February 2014, the North American Leaders agreed in their Joint Statement to "intensify our efforts to promote an amendment to the Montreal Protocol to phase down production and consumption of climate-damaging hydrofluorocarbons (HFCs)."

In March 2014, U.S. Secretary of State John Kerry instructed Chiefs of Mission and all other State Department staff to make climate change a priority across all platforms, domestically and internationally, including efforts to enhance the Montreal Protocol, the Major Economies Forum, Clean Energy Ministerial, and the CCAC, as well as efforts to conclude a new climate agreement applicable to all countries by 2015 to take effect in 2020.

On 26 March 2014, the leaders of the E.U. and the U.S. issued a Joint Statement affirming their commitment to phasing down HFCs through the Montreal Protocol, and their commitment “to ambitious domestic action to limit HFC use and emissions.”

On 31 March 2014, the leaders of the E.U. and China issued a Joint Statement announcing that they “will cooperate on taking domestic action to avoid or reduce the consumption of HFCs and to work together to promote a global phase-down of these substances.”

On 5 June 2014, the leaders of the G7 countries reaffirmed their commitment to phase down high-GWP HFCs under the Montreal Protocol:

“We will work together and with others to phase down the production and consumption of hydrofluorocarbons (HFC) under the Montreal Protocol. We will also continue to take action to promote the rapid deployment of climate-friendly and safe alternatives in motor vehicle air-conditioning and we will promote public procurement of climate-friendly HFC alternatives.”
10. Conclusion

Global HFC production and use is rising dramatically, and the associated HFC emissions could add up to 0.5°C of additional warming by the end of the century. World Leaders have called for a phasedown of HFC production and consumption. Such a phasedown would be effectively and efficiently implemented under the Montreal Protocol, which has over 25 years of experience phasing down nearly 100 f-gases used in the same sectors, and for the same purposes, as HFCs. International support for using the expertise and institutions of the Montreal Protocol to phase down HFCs is growing in strength and momentum, with recent support from the leaders of the G20 large economies, as well as with agreements between the U.S. and China and the U.S. and India. Other recent calls for action on HFCs under the Montreal Protocol have come from the Pacific small island developing states and from the member countries of the Arctic Council, as well as from the state partners to the CCAC. The formation of a formal Discussion Group on HFC Management under the Montreal Protocol is another positive sign that action will soon be taken to prevent the growth of HFCs in a manner that will support further international cooperation on climate change.

Markets are already responding to the signals from the scientists, customers, and from the policy community, including signals from the growing list of laws at the national and regional levels, which often include trade measures. Companies that produce climate-safe alternatives to HFCs are increasing their investment in alternatives and speeding their commercialization, and companies that use the current f-gases are avoiding shifting into high-GWP HFCs and instead selecting climate-friendly alternatives. Just as the national bans, boycotts, and voluntary phaseouts of CFCs in the late 1970s and early 1980s paved the way for controls under the Montreal Protocol, similar actions occurring today are paving the way for the HFC amendment and creating the conditions for fast implementation. Success with HFCs in 2014 will build momentum for a successful UN climate treaty in 2015, while failure will damage global confidence in the viability of any multilateral solution to climate change.
List of acronyms and abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A5 Parties</td>
<td>developing countries qualified for grace periods and MLF financing under the Montreal Protocol</td>
</tr>
<tr>
<td>AR5</td>
<td>Fifth Assessment Report of the IPCC</td>
</tr>
<tr>
<td>BASIC</td>
<td>Brazil, South Africa, India, and China</td>
</tr>
<tr>
<td>BAU</td>
<td>business-as-usual</td>
</tr>
<tr>
<td>BC</td>
<td>black carbon</td>
</tr>
<tr>
<td>CAFE</td>
<td>corporate average fuel economy</td>
</tr>
<tr>
<td>CCAC</td>
<td>Climate and Clean Air Coalition to Reduce Short-Lived Climate Pollutants</td>
</tr>
<tr>
<td>CFC</td>
<td>chlorofluorocarbon</td>
</tr>
<tr>
<td>CGF</td>
<td>Consumer Goods Forum</td>
</tr>
<tr>
<td>CH₄</td>
<td>methane</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>CO₂-eq</td>
<td>carbon dioxide equivalent</td>
</tr>
<tr>
<td>E.U.</td>
<td>European Union</td>
</tr>
<tr>
<td>G7</td>
<td>Canada, France, Germany, Italy, Japan, the United Kingdom and the United States</td>
</tr>
<tr>
<td>Gt</td>
<td>gigatonne (billion tonnes)</td>
</tr>
<tr>
<td>GWP</td>
<td>global warming potential</td>
</tr>
<tr>
<td>HCFC</td>
<td>hydrochlorofluorocarbon</td>
</tr>
<tr>
<td>HFC</td>
<td>hydrofluorocarbon</td>
</tr>
<tr>
<td>HFO</td>
<td>hydrofluoroolefin</td>
</tr>
<tr>
<td>IGSD</td>
<td>Institute for Governance & Sustainable Development</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>LCCP</td>
<td>life-cycle climate performance</td>
</tr>
<tr>
<td>MLF</td>
<td>multilateral fund</td>
</tr>
<tr>
<td>NGO</td>
<td>nongovernmental organization</td>
</tr>
<tr>
<td>Non-A5 Parties</td>
<td>developed country Parties to the Montreal Protocol</td>
</tr>
<tr>
<td>ODS</td>
<td>ozone-depleting substance</td>
</tr>
<tr>
<td>PFC</td>
<td>perfluorocarbon</td>
</tr>
<tr>
<td>SLCPs</td>
<td>short-lived climate pollutants</td>
</tr>
<tr>
<td>SF₆</td>
<td>sulfur hexafluoride</td>
</tr>
<tr>
<td>SEAD</td>
<td>Super-efficient Equipment and Appliance Deployment Initiative</td>
</tr>
<tr>
<td>SIDS</td>
<td>small island developing states</td>
</tr>
<tr>
<td>SLCP</td>
<td>short-lived climate pollutants</td>
</tr>
<tr>
<td>SNAP</td>
<td>Significant New Alternatives Policy Program at U.S. EPA</td>
</tr>
<tr>
<td>TEAP</td>
<td>Technology and Economic Assessment Panel (of the UNEP Montreal Protocol)</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
</tr>
<tr>
<td>UNEP</td>
<td>United Nations Environment Programme</td>
</tr>
<tr>
<td>UNFCCC</td>
<td>United Nations Framework Convention on Climate Change</td>
</tr>
<tr>
<td>U.S.</td>
<td>United States</td>
</tr>
<tr>
<td>U.S. EPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
</tbody>
</table>
Appendix

Background on IGSD’s fast-action campaign to reduce HFCs and other short-lived climate pollutants

Phasing down HFCs under the Montreal Protocol is the central focus of IGSD’s fast-action climate mitigation campaign, which promotes using existing laws and institutions to achieve immediate climate mitigation and complement efforts under the UNFCCC. IGSD’s strategy was presented in a 2009 article written by Nobel Laureate Mario Molina, Durwood Zaelke, Veerabhadran Ramanathan, Stephen O. Andersen, & Donald Kaniaru, Reducing abrupt climate change risk using the Montreal Protocol and other regulatory actions to complement cuts in CO₂ emissions. The paper was written for the Proceedings of the National Academy of Sciences of the U.S.A. as the policy piece in a PNAS Special Feature on climate tipping points edited by John Schellnhuber.

The article defines fast-action strategies as those that can be started in two to three years, substantially implemented in five years in developed countries and ten years in developing countries, and can produce a response in the climate system on a timescale of decades, to complement cuts in CO₂, which operate on a longer timescale. Broad implementation of these strategies can cut the rate of global warming in half and the rate of Arctic warming by two-thirds over the next several decades.

The HFC component of this approach was updated in a November 2012 policy paper, Strengthening Ambition for Climate Mitigation: The Role of the Montreal Protocol in Reducing Short-lived Climate Pollutants, by Durwood Zaelke, Stephen O. Andersen, & Nathan Borgford-Parnell in RECIEL, and the science component presented in a June 2013 science paper, The role of HFCs in mitigating 21st century climate change, by Yangyang Xu, Durwood Zaelke, Guus J. M. Velders, and Veerabhadran Ramanathan (26 June 2013). The paper calculates that mitigating SLCPs can avoid 1.5°C of warming by end-of-century, comparable to the 1.1°C of warming that can be avoided by aggressive CO₂ mitigation by end-of-century. The paper calculates that by 2050 SLCP mitigation can avoid six times more warming than aggressive CO₂ mitigation (0.6°C from SLCP mitigation, compared to 0.1°C from CO₂ mitigation). Up to one-third of the total of 1.5°C in avoided warming from SLCP mitigation, or 0.5°C, will come from cutting HFCs.

Related research led by Ramanathan published April 2013 in NATURE CLIMATE CHANGE calculates that cutting SLCPs can reduce the rate of sea-level rise quickly by about 25%, and when coupled with aggressive CO₂ mitigation, can double this. Individual contributions to avoided sea-level rise by 2100 from different mitigation actions are: 29% from CO₂ measures and 71% from SLCP measures (13% from HFC measures, 17% from black carbon measures, and 41% from methane measures). Aixue Hu, Yangyang Xu, Claudia Tebaldi, Warren M. Washington & Veerabhadran Ramanathan (2013) Mitigation of short-lived climate pollutants slows sea-level rise, NATURE CLIMATE CHANGE 3:730-734.

IGSD promotes the importance of reducing HFCs and other SLCP through scientific and policy publications, several of which are listed below. IGSD also promotes the importance of SLCP mitigation in various policy venues, as well as through the media. Op-Eds by IGSD, and others, are listed below, along with a list of Editorials in Nature, The Economist, The New York Times, The Washington Post, and Bloomberg.

IGSD Publications on HFCs and the Montreal Protocol

1. Yangyang Xu & Durwood Zaelke (2013) Unpacking the Problem. UNEP OUR PLANET: THE FUTURE IS PRICELESS.

11. Romina Picolotti (December 2011) *An equitable arrangement*, UNEP OUR PLANET: POWERING CLIMATE SOLUTIONS.

13. Romina Picolotti (15 July 2010) *A Proposal to Change the Political Strategy of Developing Countries in Climate Negotiations*, IISD’s MEA BULLETIN.

17. Durwood Zaelke, Peter Grabel, & Elise Stull (6 November 2008) *Avoiding Tipping Points for Abrupt Climate Changes with Fast-Track Climate Mitigation Strategies*, IISD’s MEA BULLETIN.

18. K. Madhava Sarma & Durwood Zaelke (27 June 2008), *Start, then Strengthen: The Importance of Immediate Action for Climate Mitigation*, IISD’s MEA BULLETIN.

Select Editorials and Op-Eds on HFCs and the Montreal Protocol

Editorials:

Op-Eds:

8. *Washington Post*, Op-Ed, J. Yong Kim, “*U.S. takes key climate change steps, but the world must do more*” (27 June 2013)
17. *The Guardian*, Op-Ed, A. Steiner, “*CO2 is not the only cause of climate change*” (11 Sept 2009)
HFCs belong to a family of factory-made gases including chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), used for air conditioning, refrigeration, foam insulation, and other specialized sectors. In 1975, atmospheric chemists Molina and Rowland identified the potent stratospheric ozone depleting effects of CFCs. This was followed, within a year, by the discovery of the potent greenhouse gas effect of the halocarbons CFC-11 and CFC-12. See Molina M., & Rowland F. S. (1974) Stratospheric sink for Chlorofluoromethanes: Chlorine Aton-Catalyzed Destruction of Ozone, Nature 249:810-814; and Ramanathan V. (1975) Greenhouse effect due to chlorofluorocarbons: climatic implications, SCI. 190:50-52.

3 UNEP (1987) THE MONTREAL PROTOCOL ON SUBSTANCES THAT DEPLETE THE OZONE LAYER ARTICLE 5: SPECIAL SITUATION OF DEVELOPING COUNTRIES. Under the original Montreal Protocol, developing countries consuming less than 0.3 kg CFC per capita qualified under Article 5(1) for a grace period prior to controls. Subsequently, the Montreal Protocol was modified to provide financing for the so called Article 5 Parties, and the list of Parties qualifying under Article 5 was adjusted to reflect the special circumstances of various Parties. 147 Parties currently qualify under Article 5, see UNEP (2014) List of Parties categorized as operating under Article 5 paragraph 1 of the Montreal Protocol (considered as developing countries).

4 The high growth rates of HFCs have been validated by two atmospheric measurement groups: the NOAA Earth Systems Research Laboratory, and the NASA sponsored Advanced Global Atmospheric Gases Experiment (AGAGE). AGAGE measurements of HFC-134a concentrations in particular show that atmospheric concentrations have increased by 388-560% between 2000 and 2013. See AGAGE (2014) HFC-134a; and NOAA (2014) MAUNA LOA, HAWAII, UNITED STATES HFC-134A TIME SERIES. Working Group I of the IPCC Fifth Assessment Report relies upon both of these groups to show increasing emissions of synthetic gases. See Hartmann, D.L., et al. (2013) 2013: OBSERVATIONS: ATMOSPHERE AND SURFACE, in IPCC (2013) CLIMATE CHANGE 2013: THE PHYSICAL SCIENCE BASIS, Figure 2.4.

7 See also Montreal Protocol Technology and Economic Assessment Panel (2009) TASK FORCE DECISION XX/8: REPORT: ASSESSMENT OF ALTERNATIVES TO HCFCs AND HFCs AND UPDATE OF THE TEAP 2005 SUPPLEMENT REPORT DATA; Velders G. J. M., et al. (2009) The large contribution of projected HFC emissions to future climate forcing, Proc. Nat’l Acad. Sci. U.S.A. 106:10949-10954 ("[T]he growth in demand for these compounds [HFCs] is based on GDP and population (8, 12). However, the new scenarios incorporate more recent information such as (i) rapid observed growth in demand, substantiated by atmospheric observations, for products and equipment using HFCs and HFCs in developing countries (see SI Text); (ii) reported increases in consumption of HCFCs in developing countries; (iii) replacement patterns of HCFCs by HFCs as reported in developed countries; (iv) accelerated phaseout schedules of HCFCs in developed and developing countries, and; (v) increases in reported use of HFC-134a in mobile AC in developing and developing countries.") and Phadke A., Adhyankar N., & Shah N., AVOIDING 100 NEW POWER PLANTS BY INCREASING EFFICIENCY OF ROOM AIR CONDITIONERS IN INDIA: OPPORTUNITIES AND CHALLENGES, Lawrence Berkeley National Laboratory ("The example of China is illuminating for understanding the rapid growth in household appliance ownership as a result of rising incomes and urbanization. The saturation of air conditioners in urban China went from nearly zero in 1992 to about 100% by 2007 i.e. within a span of 15 years [3]. Because of the factors mentioned in the previous section, we believe that the AC ownership in India is may witness similar growth.").

10 According to the World Resources Institute Climate Analysis Indicators Tool (CAIT), CO2-eq emissions in China increased by 111% between 2000 and 2004 (and 2.775.43% between 1990 and 2010), compared to a 68% increase in CO2, 8% increase in methane, and 6% increase in N2O. F-gas emissions increased by 78% in India over the same period, compared to 19% for CO2, 10% for methane, and 6% for N2O. F-gas emissions in the U.S. increased by 30% between 2000 and 2005 compared to 1.5% for CO2, and 5% decrease in methane and N2O. Note that f-gases include emissions of HFCs, SF6, and PFCs. According to the U.S. EPA (2014) INVENTORY OF U.S. GREENHOUSE GAS EMISSIONS AND SINKS: 1990 – 2012, Table ES-2, U.S. HFC emissions from the substitution of ozone depleting substances grew by nearly 41% between 2005 and 2012, and HFCs are the only greenhouse gases that saw total emissions increase between 2011 and 2012. E.U. CO2-eq emissions of HFCs increased by 28% between 1990 and 2012, and are the only greenhouse gases, measured by CO2-eq emissions, that have increased every year over that period. According to the Australian Government’s 2011 submission to the UNFCCC, HFC emissions in Australia
increased by 578.5% between 1990 and 2011; the only other two greenhouse gas emissions to increase over that period were CO₂ and N₂O, which increased 46.3% and 36.1% respectively. Australian Government (2013) Australia’s Sixth National Communications on Climate Change: A Report under the United Nations Framework Convention on Climate Change; see also European Environment Agency (2014) Annual European Union Greenhouse Gas Inventory 1990 – 2012 and Inventory Report 2014, No 9/2014.

12 Velders G. J. M., et al. (2014) Growth of climate change commitments from HFC banks and emissions, Atmos. Chem. Phys. Discuss. 14:4563-4572 (“The primary banks are in refrigeration and air conditioning (AC) applications, from which gases are released on a timescale of years to about a decade (medium timescale), and in closed cell foams, from which they are released over multiple decades (long timescale, e.g., in building insulation.”).

13 Velders G. J. M., et al. (2014) Growth of climate change commitments from HFC banks and emissions, Atmos. Chem. Phys. Discuss. 14:4563-4572 (“In these scenarios, the HFC bank grows to 39–64 GtCO₂-eq compared with an annual CO₂ emission of 12–74 GtCO₂-eq yr⁻¹ in 2050 (Table 2). So, the estimated HFC bank sizes range from a factor of less than 1 to more than 5 year’s worth of CO₂-eq emissions in 2050 for the scenarios compared here.”).

17 Velders G. J. M., et al. (2014) Growth of climate change commitments from HFC banks and emissions, Atmos. Chem. Phys. Discuss. 14:4563-4572 (“If, for example, HFC production were to be phased out in 2020 instead of 2050, not only could about 91–146 GtCO₂-eq of cumulative emission be avoided from 2020 to 2050, but an additional bank of about 39–64 GtCO₂-eq could also be avoided in 2050.”).

20 Xu Y., Zaelke D., Velders G. J. M., & Ramanathan V. (2013) The role of HFCs in mitigating 21st century climate change, Atmos. Chem. Phys. 13:6083-6089 (“Given the limited knowledge regarding climate sensitivity (0.5 to 1.2°C/WWm²”), the absolute value of projected temperature at the end of 21st century is also uncertain (vertical bars in Fig. 3), but the relative contribution of HFC to reducing the warming is still significant and less subject to such uncertainty.”).

The SLCP percentages are derived from Fig. 2C in Hu et al. (2013) Mitigation of short-lived climate pollutants slows sea-level rise, Nature Climate Change 3:730-734, 732.

Speech, Shende R., 2009 U.S.EPA's Stratospheric Ozone Protection and Climate Protection Awards (21 April 2009) (“Humanity has already benefited from about 60% improvement in energy efficiency in domestic refrigerators since the industry started looking at their design in order to change from CFC-12.”); and U.S. Envtl. Prot. Agency (2002) BUILDING OWNERS SAVE MONEY, SAVE THE EARTH; REPLACE YOUR CFC AIR-CONDITIONING CHILLER, 6-7 (“The most energy-efficient new chillers will reduce electric generation and associated greenhouse gas emissions by up to 50% or more compared to the CFC chillers they replace.”).

U.S. EPA (2002) BUILDING OWNERS SAVE MONEY, SAVE THE EARTH; REPLACE YOUR CFC AIR-CONDITIONING CHILLER, 2 (“Building owners around the world have saved millions of dollars in electricity bills by upgrading air conditioning chiller installations and through concurrent investments to reduce building cooling load. Today’s chillers use about one-third or less electricity compared to those produced just two decades ago. Building owners can typically pay back the investment cost of replacing an old CFC chiller in five years or less in virtually all locations that cool for more than three months a year.”); and Todesco G. (2005) CHILLERS + LIGHTING + TES: WHY CFC CHILLER REPLACEMENT CAN BE ENERGY-SAVINGS WINDFALL, ASHRAE JOURNAL, 18 (“These CFC chillers serve an estimated 3.4 billion to 4.7 billion ft² (315 million to 440 million m²) of commercial floor space with a total electricity consumption of 49,000 to 66,000 GWh/year, and an annual electricity operating cost of $3.4 billion to $4.8 billion. In addition, the cooling and lighting loads in these buildings contribute an estimated 3,600 to 9,200 MW to the summer peak demand of North American utilities. The electricity consumption and peak electrical demand can be reduced significantly by replacing the remaining CFC chillers with new efficient plants. The performance of chillers has improved significantly in the last 12 years compared to chillers manufactured in the 1970s and 1980s.”).

Press Release, York International, Taking the bite out of CFC replacement by improving air conditioning efficiency (14 February 1996) (“Now that production of chlorofluorocarbons (CFCs) has ended, the majority of commercial and institutional building owners and industrial plant managers have a chance to turn adversity into opportunity. That’s the premise of a white paper being offered by York International Corp., a major manufacturer of chillers – the large refrigeration machines at the heart of most large-building air-conditioning systems. While there’s no escaping eventual replacement or conversion of the 60,000 or more air-conditioning systems in the U.S. that use CFCs as refrigerants, the good news, according to York International, is that the energy efficiency of these systems can be dramatically improved with new technology, meaning quicker paybacks and long-term cost savings. The savings, in fact, have been calculated to range between $200,000 and $2 million, depending on local weather conditions, over a 25-year operating life.”).

See generally UNEP & CCAC (2014) LOW-GWP ALTERNATIVES IN COMMERCIAL REFRIGERATION: PROPANE, CO₂ AND HFO CASE STUDIES.

UNEP & CCAC (2014) LOW-GWP ALTERNATIVES IN COMMERCIAL REFRIGERATION: PROPANE, CO₂ AND HFO CASE STUDIES, 30 (In one of the case studies, “it is projected that the carbon footprint of the store will be reduced by 85% relative to a baseline store. Of the 85% reduction, 58% is attributable to reduced energy use while the remaining 27% is attributable to the direct emissions avoided by using propane as the refrigerant.”).

Shah N., et al. (2013) COOLING THE PLANET: OPPORTUNITIES FOR DEPLOYMENT OF SUPER-EFFICIENT ROOM AIR CONDITIONERS, 3, 9, Lawrence Berkeley National Laboratory (“The metric used to report energy savings is Rosenfelds. One Rosenfeld is equivalent to annual energy savings of 3 Twh/year, i.e. about the energy generated by one medium-sized power plant… The total 2020 energy savings potential from standards that is cost effective from a consumer perspective is about 64 Rosenfelds, i.e. Equivalent to 64 medium sized power plants (or 192 TWh/year), while the total technical potential is about 123 Rosenfelds, i.e. about 123 medium sized power plants (or 369 TWh/year).”).

Phadke A., Adhyankar N., Shah N., AVOIDING 100 NEW POWER PLANTS BY INCREASING EFFICIENCY OF ROOM AIR CONDITIONERS IN INDIA: OPPORTUNITIES AND CHALLENGES, Lawrence Berkeley National Laboratory, 1 (“The total potential energy savings from Room AC efficiency improvement in India using the best available technology will reach over 118 TWh in 2030; potential peak demand saving is found to be 60 GW by 2030. This is equivalent to avoiding 120 new coal fired power plants of 500 MW each.”); see also White House Office of the Press Secretary, Fact Sheet: The United States and India – Strategic and Global Partners (27 September 2013) (“Demand for space cooling – primarily for air conditioners – constitutes a
large portion of peak electricity demand in India. Air conditioners could add as much as 140 GW to peak load by 2030 and management of the peak contribution is critical for maintaining supply security and avoiding load shedding. The new U.S.-India Collaboration on Smart and Efficient Air Conditioning and Space Cooling is intended to advance policies and innovation to drive mass deployment and rapid uptake of high-efficiency cooling equipment and technologies to capture significant energy savings, potentially avoiding the need to build as many as 120 large power plants.”

35 As of June 2013, Indian air conditioning companies reported annual sales growth of up to 30%. In China, companies report air conditioning sales at a compounded annual growth rate of 13% over the past five years. Natural Resources Defense Council (2012) Bhaskar Deol Guest Blog: Reducing Delhi’s Power Crunch Through Appliance Efficiency (“Two recent studies, one by Maharashtra Electricity Regulatory Commission (MERC), and another by India’s Bureau of Energy Efficiency (BEE), show that AC power demand forms a lion’s share of peak demand in Indian cities. The MERC study pegs power demand from ACs at 40% of the total demand for the city of Mumbai in a peak summer month and the BEE study estimates that a staggering 60% of peak demand is used up by air-conditioners.”); and The Economic Times, Air Conditioner Sales Soar up to 30 percent (4 June 2013) (“The sizzling summer may have made consumers bear the brunt of heat but air conditioner makers are laughing all the way to the bank with sales soaring by up to 30 per cent this season.”).

36 For example, in the room air conditioning sector, a recent study concluded that significant energy savings are cost effective in most of the economies studied. See also Shah N., et al. (2013) COOLING THE PLANET: OPPORTUNITIES FOR DEPLOYMENT OF SUPER-EFFICIENT ROOM AIR CONDITIONERS, Lawrence Berkeley National Laboratory, 69 (“As shown above in figure 4-5, for most economies ESEERs (European Seasonal Energy Efficiency Ratio) of over 6 W/W are attainable at costs (to the consumer) of conserved electricity between 5 and 15 cents per kWh. In economies with a higher cost of capital (i.e. discount/interest rates) such as Brazil, or low hours of use such as Mexico or China, higher efficiency ACs carry a larger cost of conserved electricity, when compared to India or UAE. For countries such as Japan where ACs are used for both heating and cooling, and India or UAE, where ACs are used for many hours annually, very high ESEERs are attainable at low cost per unit of electricity saved.”).

37 Adapted from Table 5-2 in Shah N., et al. (2013) COOLING THE PLANET: OPPORTUNITIES FOR DEPLOYMENT OF SUPER-EFFICIENT ROOM AIR CONDITIONERS, Lawrence Berkeley National Laboratory, 75 (Economically justified energy savings per country calculate the maximum energy efficiency of room A/C achievable under current consumer energy tariffs in each individual country. Technically possible energy savings are calculated by assuming that the best available technologies are deployed in the climate and seasonal conditions of the respective economies are deployed irrespective of cost).

38 According to the Carbon Trust, a tonne of diesel/gas contains approximately 12,683 kWh of energy, and according to BP, one tonne of diesel/gas is equivalent to 7.5 barrels. One kWh is equal to 0.00000001 TWh. See Carbon Trust (2013) CONVERSION FACTORS: ENERGY AND CARBON CONVERSIONS; and BP (2013) Conversion factors.

44 U.S. EPA (2013) BENEFITS OF ADDRESSING HFCs UNDER THE MONTREAL PROTOCOL, Tables 4-6; see also Climate and Clean Air Coalition to Reduce Short-lived Climate Pollutants (CCAC) (2014) LOW-GWP ALTERNATIVES IN COMMERCIAL REFRIGERATION: PROPANE, CO2, AND HFO CASE STUDIES, 5 (“Research was conducted to generate a list of potential case studies for consideration taking into account all of the currently available zero- and low-GWP refrigerants in commercial refrigeration applications, including “natural” refrigerants, such as hydrocarbons, carbon dioxide (CO2), and ammonia, as well as the other major category of alternatives comprising man-made chemicals such as the unsaturated HFCs known as hydrofluoroolefins (HFOs). HFOs are a new class of unsaturated HFC refrigerants which have lower GWP’s and shorter atmospheric lifetimes when compared to other HFCs.”).

45 Myhre G., et al. (2013) CHAPTER 8: ANTHROPOGENIC AND NATURAL RADIATIVE FORCING, in IPCC (2013) CLIMATE CHANGE 2013: THE PHYSICAL SCIENCE BASIS, Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Table 8.A.1. See also Hodnebrog O. et al. (2013) Global warming potentials and radiative efficiencies of halocarbons and related compounds: A comprehensive review, REV. GEOPHYS, 333 (calculating that HFO-1234yzf and HFO-1234ze have a lifespan of 0.02 years and a GWP of less than 1).

Honeywell (2013) Honeywell Solstice Liquid Blowing Agent (“Performance: Up to 10-12% better than hydrocarbon (Cyclopentane); 2% better than HFC-245fa. We expect even more as formulations are fine-tuned.”); see also Press Release, Whirlpool Corporation, Whirlpool Corporation Partners with Honeywell, Announces Use of Next Generation Solstice® Liquid Blowing Agent in U.S. Refrigerators (22 January 2014) (“The global warming potential (GWP) of the new foam blowing agent is 99.9% lower than 245fa the most common foam blowing agent widely used within the U.S. industry, resulting in a more environmentally-responsible household refrigerator.”); and Arkema (2013) Forane 1233zd Blowing Agent: Technical Profile.

Recent Developments in Low GWP Refrigerants for Air Conditioning and Refrigeration Applications (Honeywell presentation at Bangkok Technology Conference, 29 June 2013).

See, e.g., Davos 2014: Achim Steiner Insider Diary (25 January 2014) Guardian Sustainable Business Blog (statement by UN Under-Secretary General and Executive Director of the UN Environment Programme Achim Steiner: “Next came ‘short-lived climate pollutants’ - part of this years' Davos focus on climate change. After working in UNEP for five years to mature cutting edge science into options for action, one of those Davos moments happened. Major business leaders and public officials agreed to join hands in moving on HFCs, methane and black carbon, which drive global warming but also affect our health and economies. Its like teeth wheels clicking in place - you know you have changed gears.”).

Air-Conditioning, Heating, and Refrigeration Institute AHIR Responds to President Obama’s Climate Change Plan (2 July 2013) (“AHRI supports the continued efforts by the United States and its North American partners to engage in discussions at the Montreal Protocol, especially the North American amendment regarding the future of HFCs.”).

European Fluorocarbon Technical Committee [EFTC] (2012) HFC Producers Support Action Under the Montreal Protocol for a Consumption Cap and Reduction of HFCs (31 Oct. 2012) (“[EFTC] would like to take the opportunity to encourage Parties to the Montreal Protocol to move forward with a constructive dialogue to achieve an agreement for a global cap and reduction for HFC consumption on a GWP-weighted basis.”) The members of the EFTC are Mexichem Flour, Arkema, DuPont, Solvay Fluor, and Honeywell Fluorine Products. It is a sector group of The European Chemical Industry Council.

Refrigerants, Naturally! Refrigerants, Naturally! Calls for An Immediate HFC-Phasedown Under the Montreal Protocol, (June 2013) (Refrigerants, Naturally! members, including PepsiCo, Red Bull, Coca-Cola, and Unilever, “support the proposed amendments to include HFCs in the Montreal Protocol in cooperation with the UNFCCC. An international agreement to bring HFCs into the regulatory regime of the Montreal Protocol would be an important step towards a phase-down and eventual phase-out of these substances.”).

The Alliance for Responsible Atmospheric Policy (2011) Industry Actions To Responsibly Meet Society’s Needs: Refrigeration, Air Conditioning, Thermal Insulation and Other Applications (“The Alliance for Responsible Atmospheric Policy (Alliance) supports a planned, orderly global phasedown of substances with high global warming potentials (GWP), improved application energy efficiency, leakage reduction, and recovery/reuse or destruction at application end-of-life.”).

DuPont DuPont Position Statement on Montreal Protocol (10 June 2013) (“…DuPont is now engaged in advocacy work to add hydrofluorocarbons (HFCs) to the Montreal Protocol.”).

DuPont Opteon Refrigerant Has Low GWP (2013); see also Press Release, Honeywell DuPont, Honeywell Announce Refrigerants Global Joint Venture Agreement (29 March 2007) (“DuPont and Honeywell today announced a global joint development agreement to accelerate the development and commercialization of next generation, low global warming refrigerants for the automotive air conditioning industry.”).

Refrigerants, Naturally! History and Achievements (2013).
Coca-Cola Cooler Choice: Freezing Out HFC In Favor Of Natural Refrigerant (22 January 2014) (Coca-cola reports that “we have placed the 1 millionth HFC-free cooler, using natural refrigerant, in the marketplace. This marks significant progress toward our 2015 system-wide goal for all new cold-drink equipment to be HFC-free.”).

Refrigerants Naturally!, PepsiCo (2013); see also Red Bull (2013) Efficient Cooling; Unilever (2014) Targets & Performance; Fleury J-M (2011) Roll out and Experience of Natural Refrigerants based technology at Carrefour, presentation at ATMOSphere Europe 2011, Brussels, 11-12 October 2011; and U.S. EPA (2013) Benefits of Addressing HFCs Under the Montreal Protocol, (“Sanyo has produced CO₂ compressors since 2001, originally developed for heat pump water heaters. Using this technology, Sanyo developed the first CO₂ vending machine, which was field tested in February 2004 in Australia. Results from these tests showed that the CO₂ system consumed 17% less energy compared to the comparable HFC-134a system during the summer season. Beginning in 2005, CO₂ vending machines began being sold in Japan and have represented a significant and growing portion of the Japanese market—estimated at 116,000 units in 2010.”).

The Consumer Goods Forum (2012) The CGF Good Practices About HFC-Refrigeration and Energy Efficiency; see also U.S. EPA (2013) Benefits of Addressing HFCs Under the Montreal Protocol, (“Sobeys, Canada’s second largest food retailer, installed its first transcritical CO₂ system in July 2006 and has plans to implement the technology in all of its 1,300 stores in 15 years […] Supervalu opened an ammonia-based refrigeration system in their Albertsons store in Carpinteria, California in 2012, the first in the United States.”).

Press Release, Whirlpool Corporation, Whirlpool Corporation Partners with Honeywell, announces Use of Next Generation Solstice® Liquid Blowing Agent in U.S. Refrigerators (22 January 2014) (“Whirlpool Corporation announced it has implemented the use of Honeywell’s Solstice® Liquid Blowing Agent [HFO-1233zd(E)], into its environmentally responsible and energy efficient insulation used in U.S.-made refrigerators and freezers. The global warming potential (GWP) of the new foam blowing agent is 99.9% lower than 245fa the most common foam blowing agent widely used within the U.S. industry, resulting in a more environmentally-responsible household refrigerator. The conversion of all U.S. manufacturing centers is scheduled to be completed by the end of 2014 and the impact to the global warming effect will be the equivalent of removing more than 400,000 cars from the road.” Honeywell further states that its new product will improve energy efficiency by 2% over HFC-245fa, and by 10-12% over hydrocarbon (Cyclopentane).”)

Press Release, Whirlpool Corporation, Whirlpool Corporation Partners with Honeywell, announces Use of Next Generation Solstice® Liquid Blowing Agent in U.S. Refrigerators (22 January 2014) (“Whirlpool Corporation announced it has implemented the use of Honeywell’s Solstice® Liquid Blowing Agent [HFO-1233zd(E)], into its environmentally responsible and energy efficient insulation used in U.S.-made refrigerators and freezers. The global warming potential (GWP) of the new foam blowing agent is 99.9% lower than 245fa the most common foam blowing agent widely used within the U.S. industry, resulting in a more environmentally-responsible household refrigerator. The conversion of all U.S. manufacturing centers is scheduled to be completed by the end of 2014 and the impact to the global warming effect will be the equivalent of removing more than 400,000 cars from the road.” Honeywell further states that its new product will improve energy efficiency by 2% over HFC-245fa, and by 10-12% over hydrocarbon (Cyclopentane).”)

China State Council (2014) 2014-2015 Energy Conservation, Emissions Reduction and Low Carbon Development Action Plan (in Chinese) (“为了确保全面完成‘十二五’节能减排降碳目标，制定本行动方案……加强对氯氟碳化物（HFCs）排放的管理，加快氢氟碳化物销毁和替代，‘十二五’期间累计减排2.8亿吨二氧化碳当量。” English translation: “The action plan is made in order to meet all the energy conservation and emission reduction targets set for the twelfth five year period…. Strengthen the
management of HFCs emission. Accelerate the destruction and replacement of HFCs. The total emission reduction of HFCs should reach 0.28 billion tonnes CO₂-eq during the twelfth five year period.”.

101 See e.g. European Commission (2013) IMPLEMENTATION OF DIRECTIVE 2006/40/EC – STATE OF PLAY.

102 The President’s Climate Action Plan (Executive Office of the President) (the Significant New Alternatives Policy Program is listed as a policy tool to “encourage private sector investment in low-emissions technology by identifying and approving climate-friendly chemicals while prohibiting certain uses of the most harmful chemical alternatives”); and The White House Office of the Press Secretary, Remarks by the President on Climate Change (25 June 2013) (In the U.S., “Eliminating HFCs represents the biggest opportunity for GHG emissions reductions behind power plants,” and would provide 23% of the emissions reductions needed to achieve the U.S.’s 2020 reduction goal (17% below 2005 emissions)). See also Bianco N. et al. (2013) Can the U.S. Get There From Here?: Using Existing Federal Laws and State Action to Reduce Greenhouse Gas Emissions, World Resources Institute, 1.

103 H.R. 1943 (2013) SUPPER Act of 2013, 112th Congress 1st Session (introduced). In addition, 16 members of the U.S. Congress sent a letter in December 2013 urging U.S. EPA Administrator Gina McCarthy to use the agency’s authority to reduce the use of HFCs in the U.S. (“We are writing to ask your agency to pursue commonsense policies that accelerate the replacement phasdown of hydrofluorocarbons (HFCs) in this country and globally. … We encourage you to focus your agency on HFC applications where technology solutions and alternative products are already available or soon to be in the market, similar to what the European Union has done with their Mobile Air Conditioning Directive. The agency should look to where market transitions are already underway and where EPA action could hasten the pace of those transitions, both domestically and elsewhere. We think that such actions would not only have significant cost-effective environmental benefits but would also strengthen the Administration’s hand in the Montreal Protocol negotiations.”) Press Release, Office of U.S. Senator for Delaware Tom Carper, Members of Congress Urge EPA Administrator McCarthy to Reduce Use of Harmful Climate Change-Causing Pollutant (4 December 2013).

104 Stecker T. (19 May 2014) Obama Admin Weighs Deleting Super-Warming Gases From Approved Ozone List, E&E Publishing; and Natural Resources Defense Council, David Doniger’s Blog: EPA Tackles HFC Super Pollutants, Next Step in President Obama’s Climate Action Plan (7 February 2014) (“Meeting with more than 100 industry and environmental stakeholders last Tuesday [28 January 2014] in a packed ballroom in Washington, EPA officials laid out a schedule for proposing regulations this spring and summer to replace some of the most dangerous HFCs with newer refrigerants, foam-blowing agents, and aerosol propellants that have much less impact on our climate. As the president promised in his Climate Action Plan, EPA will use its authority under the Clean Air Act’s “Significant New Alternatives Program” (SNAP) to start removing the worst HFCs from the market.”.

107 The Climate and Clean Air Coalition to Reduce Short-Lived Climate Pollutants (2014) CCAC - Initiatives.

108 Schwarz W., et al. (2011) PREPARATORY STUDY FOR A REVIEW OF REGULATION (EC) NO 842/2006 ON CERTAIN FLUORINATED GREENHOUSE GASES: FINAL REPORT.

111 Schwarz W., et al. (2011) PREPARATORY STUDY FOR A REVIEW OF REGULATION (EC) NO 842/2006 ON CERTAIN FLUORINATED GREENHOUSE GASES: FINAL REPORT.

112 Congreso de los Diputados (2013) Boletín oficial de las cortes generales congreso de los diputados, serie A, num. 51-1, BOCG-10-A-54-1 (in Spanish); see also Ammonia 21 (July 2013) Spain Considers F-gas Tax at €20/tCO₂-eq.

113 Comité pour la fiscalité écologique (2013) OPPORTUNITÉ D’UNE TAXATION DES FLUIDES FRIORIGÈNES (in French); see also Everything R744 HFCs to be Taxed in France? (26 April 2013).

Schwarz W., et al. (2011) PREPARATORY STUDY FOR A REVIEW OF REGULATION (EC) NO 842/2006 ON CERTAIN FLUORINATED GREENHOUSE GASES: FINAL REPORT.

Canada Gazette (1999) NOTICE WITH RESPECT TO HYDROFLUOROCARBONS (“This notice requires information on HFCs for the 2008 to 2012 calendar years. The information will help the Government of Canada to better define current applications and quantities of these substances to inform Canada’s position on potential control strategies, including at the international level. … Compliance with the Canadian Environmental Protection Act, 1999 (hereinafter referred to as the “Act”) is mandatory pursuant to subsections 272(1) and 272.1(1) of the Act. … Penalties for offences can result, upon conviction (either summary conviction or indictment), of fines of not more than $12 million, imprisonment for a term of not more than three years, or both.”).

Australian Government (2013) AUSTRALIA’S SIXTH NATIONAL COMMUNICATION ON CLIMATE CHANGE: A REPORT UNDER THE UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE.

Schwarz W., et al. (2011) PREPARATORY STUDY FOR A REVIEW OF REGULATION (EC) NO 842/2006 ON CERTAIN FLUORINATED GREENHOUSE GASES: FINAL REPORT.

Schwarz W., et al. (2011) PREPARATORY STUDY FOR A REVIEW OF REGULATION (EC) NO 842/2006 ON CERTAIN FLUORINATED GREENHOUSE GASES: FINAL REPORT.

Swiss Confederation (2013) SWITZERLAND’S SIXTH NATIONAL COMMUNICATION AND FIRST BIENIAL REPORT UNDER THE UNFCCC.

Australian Government (last visited June 9, 2014) Import, Export and Manufacture of ODSs and SGGs.

Schwarz W., et al. (2011) PREPARATORY STUDY FOR A REVIEW OF REGULATION (EC) NO 842/2006 ON CERTAIN FLUORINATED GREENHOUSE GASES: FINAL REPORT.

Australian Government (2013) AUSTRALIA’S SIXTH NATIONAL COMMUNICATION ON CLIMATE CHANGE: A REPORT UNDER THE UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE.

Danish Ministry of Environment (last visited August 1, 2013) Q&A Concerning Industrial Greenhouse Gases (HFCs, PFCs and SF6).

of the Clean Energy Future Plan, the
U.S. will provide an incentive payment of $1.50 per kilogram of waste synthetic greenhouse gases and ozone depleting substances destroyed to refrigerant contractors. This payment is in addition to the current incentive payment made by the industry funded refrigerant product stewardship program operated by Refrigerant Reclaim Australia. This is a 50 per cent increase on the $3.00 per kilogram payment by Refrigerant Reclaim Australia for waste gas recovered and provided to the organisation for destruction.”; see also Australian Government Department of the Environment (2013) Destruction Incentives Program for waste synthetic greenhouse gases and ozone depleting substances.

143 Estrada F., Perron P., & Martinez-López B. (2013) Statistically derived contributions of diverse human influences to twentieth-century temperature changes, Nat. Geosci. 6:1050–1055 (“Our statistical analysis suggests that the reduction in the emissions of ozone-depleting substances under the Montreal Protocol, as well as a reduction in methane emissions, contributed to the lower rate of warming since the 1990s.”).

See also U.S. EPA (2013) Benefits of Addressing HFCs under the Montreal Protocol (calculating the mitigation as almost 95 billion tonnes of CO2 between 2016 and 2050); Xu Y., Zaelke D., Velders G. J. M., & Ramanathan V. (2013) The role of HFCs in mitigating 21st century climate change, Atmos. Chem. Phys. 13:6083-6089; and Velders G. J. M., et al. (2014) Growth of climate change commitments from HFC banks and emissions, Atmos. Chem. Phys. Discuss. 14:4563-4572 (“If, for example, HFC production were to be phased out in 2020 instead of 2050, not only could about 91–146GtCO2-eq of cumulative emission be avoided from 2020 to 2050, but an additional bank of about 39–64 GtCO2-eq could also be avoided in 2050.”).

155 The U.S. Environmental Protection Agency calculates that the mitigation would be equivalent to between 93.6 and 115 billion tonnes of CO2 by 2050, and between 115.8 and 141.1 billion tonnes in the first 40 years. See U.S. EPA (2014) Summary: North American 2014 HFC Submissions to the Montreal Protocol (“Cumulative benefits of the HFC amendment proposal estimated by the U.S. Government are between 93,800 – 115,000 million metric tons of carbon dioxide equivalent (MMTCO2-eq) through 2050, and about 115,800–141,100 MMTCO2-eq for 40 years after the effective date of the proposal.”). See also Velders G. J. M., et al. (2014) Growth of climate change commitments from HFC banks and emissions, Atmos. Chem. Phys. Discuss. 14:4563-4572 (“If, for example, HFC production were to be phased out in 2020 instead of 2050, not only could about 91–146GtCO2-eq of cumulative emission be avoided from 2020 to 2050, but an additional bank of about 39–64 GtCO2-eq could also be avoided in 2050.”), and UNEP (2012) The Montreal Protocol and the Green Economy: Assessing the Contributions and Co-benefits of a Multilateral Environmental Agreement.

156 Additional mitigation is possible when banks of HFCs are collected and destroyed, with about 39–64 GtCO2-eq available if this is done in 2020. See Velders G. J. M., et al. (2007) The importance of the Montreal Protocol in protecting climate, Proc. Nat’l. Acad. Sci. U.S.A. 104:4814-4819; and Velders G. J. M., et al. (2014) Growth of climate change commitments from HFC banks and emissions, Atmos. Chem. Phys. Discuss. 14:4563-4572 (“If, for example, HFC production were to be phased out in 2020 instead of 2050, not only could about 91–146GtCO2-eq of cumulative emission be avoided from 2020 to 2050, but an additional bank of about 39–64 GtCO2-eq could also be avoided in 2050.”).

157 G8 (2009) G8 Declaration: Responsible Leadership for a Sustainable Future (“66. We recognize that the accelerated phase-out of HFCs mandated under the Montreal Protocol is leading to a rapid increase in the use of HFCs, many of which are very potent GHGs. Therefore we will work with our partners to ensure that HFC emissions reductions are achieved under the appropriate framework. We are also committed to taking rapid action to address other significant climate forcing agents, such as black carbon. These efforts, however, must not draw away attention from ambitious and urgent cuts in emissions from other, more long-lasting, greenhouse gases, which should remain the priority.”).

158 UNEP (2009) Declaration on High-GWP Alternatives to ODSs, in UNEP (2009) Report of the Twenty-First Meeting of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer (The 2009 Declaration was signed by Angola, Cameroon, Canada, Chad, Comoros, Congo, Dominican Republic, Egypt, Fiji, Gabon, Grenada, Guinea Bissau, Indonesia, Japan, Kiribati, Madagascar, Marshall Islands, Mali, Mauritania, Mauritius, Mexico, Micronesia, Morocco, Namibia, New Zealand, Nigeria, Papua New Guinea, Palau, Saint Lucia, Solomon Islands, Somalia, Sudan, Switzerland, Timor-Leste, Togo, Tonga, Tunisia, United States, Zambia).

159 UNEP (2010) Declaration on the Global Transition Away from Hydrochlorofluorocarbons (HCFCs) and Chlorofluorocarbons (CFCs); see also UNEP (2011) Report of the Combined Ninth Meeting of the Conference of the Parties to the Vienna Convention on the Protection of the Ozone Layer and the Twenty-Third Meeting of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer, para. 155-157; and UNEP (2012) Report of the Twenty-Fourth Meeting of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer, para. 188.

160 European Council (2013) Submission by Ireland and the European Commission of the European Union and its Member States (“The 2011 Bali Declaration under the Montreal Protocol lists 112 signatories committed to explore further and pursue effective means of transitioning to environmentally friendly alternatives to high GWP HFCs.”).

161 Climate and Clean Air Coalition to Reduce Short Lived Climate Pollutants (2014) Executive Summary.

162 The White House Office of the Press Secretary (2012) Fact Sheet: G-8 Action on Energy and Climate Change (“In the spirit of increasing mitigation efforts, we agree to collectively join the Climate and Clean Air Coalition to Reduce Short-Lived Climate Pollutants, launched on February 16, 2012. This new initiative will enhance our collective ambition in addressing climate change by complementing efforts to address CO₂ emissions. By developing strategies to reduce short term pollutants – chiefly methane, black carbon, and hydrofluorocarbons – we can help reduce global warming, improve health, and increase agricultural productivity, as well as energy security”); and The White House Office of the Press Secretary (2012) Camp David Declaration.

163 United Nations (2012) Resolution Adopted by the General Assembly: The Future We Want, A/RES/66/288 (“222. We recognize that the phase-out of ozone-depleting substances is resulting in a rapid increase in the use and release of high global-
warming potential hydrofluorocarbons to the environment. We support a gradual phase-down in the consumption and production of hydrofluorocarbons.

166 Arctic Council Secretariat (2013) Kiruna Declaration On the occasion of the Eighth Ministerial Meeting of the Arctic Council, further support for addressing HFCs is expressed in the 2012 G8 Camp David Declaration (focusing on the package of four short-lived climate pollutants, which includes HFCs); the 2009 G8 Declaration (“Therefore we will work with our partners to ensure that HFC emissions reductions are achieved under the appropriate framework.”); and the 2008 Declaration of Leaders from the Major Economies on Energy Security and Climate Change. (“To enable the full, effective, and sustained implementation of the Convention between now and 2012, we will: … Continue to promote actions under the Montreal Protocol on Substances That Deplete the Ozone Layer for the benefit of the global climate system…”).

167 Press Release, The White House Office of the Press Secretary, United States and China Agree to Work Together on Phase - Down of HFCs (8 June 2013).

168 Executive Office of the President (2013) THE PRESIDENT’S CLIMATE ACTION PLAN (mentioning the Significant New Alternatives Policy Program as a policy tool to “encourage private sector investment in low-emissions technology by identifying and approving climate-friendly chemicals while maintaining certain uses of the most harmful chemical alternatives”); and The White House Office of the Press Secretary Remarks by the President on Climate Change (25 June 2013). See also Bianco N., et al. (2013) CAN THE U.S. GET THERE FROM HERE?: USING EXISTING FEDERAL LAWS AND STATE ACTION TO REDUCE GREENHOUSE GAS EMISSIONS, World Resources Institute, 1 (In the U.S., “Eliminating HFCs represents the biggest opportunity for GHG emissions reductions beyond power plants,” and would provide 23% of the emissions reductions needed to achieve the U.S.’s 2020 reduction goal (17% below 2005 emissions)).

170 Press Release, Republic of South Africa Department of Environmental Affairs, Joint Statement Issued at the Conclusion of the 15th BASIC Ministerial Meeting on Climate Change (28 June 2013).

171 Press Release, U.S. Department of State, U.S.-China Climate Change Working Group Fact Sheet (10 July 2013); see also Press Release, U.S. Department of State, Report of the U.S.-China Climate Change Working Group to the Strategic and Economic Dialogue (10 July 2013) (“Additionally, President Barack Obama and President Xi Jinping made the announcement on June 8, 2013 that the United States and China agreed to work together and with other countries through multilateral approaches that include using the expertise and institutions of the Montreal Protocol to phase down the production and consumption of HFCs, while continuing to include HFCs within the scope of UNFCCC and its Kyoto Protocol provisions for accounting and reporting of emissions. The Working Group will work effectively to carry forward this effort.”); and Press Release, U.S. Department of State, U.S.-China Strategic and Economic Dialogue V Strategic Track Select Outcomes (12 July 2013) (“They will also work together to implement the agreement of Presidents Obama and Xi on HFCs.”).

173 Climate and Clean Air Coalition to Reduce Short-Lived Climate Pollutants (2013) COMMUNIQUÉ OF THE THIRD MEETING OF THE HIGH LEVEL ASSEMBLY.

174 Press Release, White House Office of the Press Secretary, United States and China Reach Agreement on Phase Down of HFCs (6 September 2013).

175 The St. Petersburg G20 Leaders‘ Declaration includes Argentina, Australia, Brazil, Canada, China, France, Germany, India, Indonesia, Italy, Japan, Korea, Mexico, Russia, Saudi Arabia, South Africa, Turkey, United Kingdom, United States, and the European Union, as well as support from invited observer countries: Ethiopia, Spain, Senegal, Brunei, Kazakhstan, and Singapore. G20 (2013) G20 Leaders’ Declaration.

176 Press Release, Republic of South Africa Department of Environmental Affairs, Joint Statement Issued at the Conclusion of the 16th BASIC Ministerial Meeting on Climate Change (16 September 2013); see also UNEP (2013) REPORT OF THE THIRTY-THIRD MEETING OF THE OPEN-ENDED WORKING GROUP OF THE PARTIES TO THE MONTREAL PROTOCOL ON SUBSTANCES THAT DEplete THE OZONE LAYER, 21-22. (“155. Several representatives raised concerns over the level of financial support that would need to be available [for an HFC phasedown under the Montreal Protocol], especially given developing countries’ limited resources and competing priorities for public funding. Several representatives raised their concern over the availability of funding for both HCFC phase-out and potential HFC phase-down and one representative highlighted the inadequate amounts that his country had thus far received for assisting with HCFC phase-out […] 160. Several representatives from high-ambient-temperature regions explained that the matter of the availability of [HFC] alternatives was a particular concern to them. In their countries, summer temperatures could reach as high as 55° C, in such circumstances, air conditioning was not a luxury but a necessity. Concerns
over flammability and safety further limited the availability of alternatives to HFCs […] 162. Several representatives, from parties operating under paragraph 1 of Article 5 and from parties not so operating, underlined the need for the latter to take the lead in demonstrating the technical and economic feasibility of new alternatives.”).

White House Office of the Press Secretary, U.S.-India Joint Statement (27 September 2013).

White House Office of the Press Secretary, Fact Sheet: The United States and India – Strategic and Global Partners (27 September 2013).

In the decision requesting action by the TEAP, the Parties agreed to: (1) estimate current and future demand for alternatives, including HFCs, and also requested an assessment of the economic costs and implications, and environmental benefits of various scenarios that avoid high-GWP alternatives to currently used ODS, including, HFCs; (2) convene a workshop back-to-back with the 34th OEWG in summer 2014 to continue discussions on HFC management; (3) provide to the Ozone Secretariat, on a voluntary basis, information regarding the avoidance of HFCs under the existing HCFC phase-out; and (4) request the Executive Committee of the Multilateral Fund to consider whether additional demonstration projects to validate low-GWP alternatives and technologies, and additional activities to maximize the climate benefits in the HCFC production sector, would be useful in assisting developing country Parties in further minimizing the environmental impacts of the HCFC phase-out. UNEP (2013) DRAFT REPORT OF THE TWENTY-FIFTH MEETING OF THE PARTIES TO THE MONTREAL PROTOCOL ON SUBSTANCES THAT DEplete THE Ozone Layer, UNEP/Ozl.Pro.25/L.1; see also UNEP (2013) DRAFT decision XXV/[XI]: RESPONSE TO THE REPORT BY THE TECHNOLOGY AND ECONOMIC ASSESSMENT PANEL ON INFORMATION ON ALTERNATIVES TO OZONE-DEPLETING SUBSTANCES.

White House Office of the Press Secretary, Fact Sheet: U.S. Cooperation with France on Protecting the Environment, Building a Clean Energy Economy, and Addressing Climate Change (11 February 2014).

U.S. Department of State Official Blog (2014) We Need To Elevate the Environment in Everything We Do (“This challenge demands elevated urgency and attention from all of us… Here’s what this guidance means in practice: I. Lead by example through strong action at home and abroad … at the federal, regional, and local level. II. Conclude a new international climate change agreement … applicable to all countries by 2015 to take effect in 2020. III. Implement The Global Climate Change Initiative… IV. Enhance multilateral engagement … including the Major Economies Forum, Clean Energy Ministerial, Montreal Protocol, and the Climate and Clean Air Coalition to Reduce Short-Lived Climate Pollutants. V. Expand bilateral engagement … on clean energy…. VI. Mobilize financial resources … and leverage billions of dollars of funding to transform our energy economies and promote sustainable land use, as well as working to limit public incentives for high-carbon energy production and fossil fuels. VII. Integrate climate change with other priorities…. including women’s empowerment, urbanization, conflict and national security, and our own management and operations.”). See also U.S. Department of State, Fact Sheet: Addressing Climate Change: A Top U.S. Priority (5 March 2014).

Press Release, European Commission, Joint Statement: Deepening the E.U.-China Comprehensive Strategic Partnership for mutual benefit (31 March 2014), para. 18; see also para. 10 (where the E.U. and China “reaffirmed their commitment to implement their G20 commitments.”).

The White House Office of the Press Secretary, The Brussels G-7 Summit Declaration (5 June 2014) (The G-7 includes Canada, France, Germany, Italy, Japan, the U.K. the U.S., the President of the European Council, and the President of the European Commission.).